BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 32160211)

  • 1. Transcriptome analysis of the plant pathogen Sclerotinia sclerotiorum interaction with resistant and susceptible canola (Brassica napus) lines.
    Chittem K; Yajima WR; Goswami RS; Del Río Mendoza LE
    PLoS One; 2020; 15(3):e0229844. PubMed ID: 32160211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq.
    Joshi RK; Megha S; Rahman MH; Basu U; Kav NN
    Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The host generalist phytopathogenic fungus Sclerotinia sclerotiorum differentially expresses multiple metabolic enzymes on two different plant hosts.
    Allan J; Regmi R; Denton-Giles M; Kamphuis LG; Derbyshire MC
    Sci Rep; 2019 Dec; 9(1):19966. PubMed ID: 31882688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome Analysis of Sclerotinia sclerotiorum at Different Infection Stages on Brassica napus.
    Peng Q; Xie Q; Chen F; Zhou X; Zhang W; Zhang J; Pu H; Ruan Y; Liu C; Chen S
    Curr Microbiol; 2017 Oct; 74(10):1237-1245. PubMed ID: 28785831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Alternative Splicing Genes and Isoform Regulation Networks of Rapeseed (
    Ma JQ; Xu W; Xu F; Lin A; Sun W; Jiang HH; Lu K; Li JN; Wei LJ
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32668742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome Wide Identification and Functional Prediction of Long Non-Coding RNAs Responsive to Sclerotinia sclerotiorum Infection in Brassica napus.
    Joshi RK; Megha S; Basu U; Rahman MH; Kav NN
    PLoS One; 2016; 11(7):e0158784. PubMed ID: 27388760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus.
    Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y
    Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus.
    Seifbarghi S; Borhan MH; Wei Y; Coutu C; Robinson SJ; Hegedus DD
    BMC Genomics; 2017 Mar; 18(1):266. PubMed ID: 28356071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening of microRNAs and target genes involved in Sclerotinia sclerotiorum (Lib.) infection in Brassica napus L.
    Xie L; Jian H; Dai H; Yang Y; Liu Y; Wei L; Tan M; Li J; Liu L
    BMC Plant Biol; 2023 Oct; 23(1):479. PubMed ID: 37807039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus.
    Wei L; Jian H; Lu K; Filardo F; Yin N; Liu L; Qu C; Li W; Du H; Li J
    Plant Biotechnol J; 2016 Jun; 14(6):1368-80. PubMed ID: 26563848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentially expressed proteins and associated histological and disease progression changes in cotyledon tissue of a resistant and susceptible genotype of brassica napus infected with Sclerotinia sclerotiorum.
    Garg H; Li H; Sivasithamparam K; Barbetti MJ
    PLoS One; 2013; 8(6):e65205. PubMed ID: 23776450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attack modes and defence reactions in pathosystems involving Sclerotinia sclerotiorum, Brassica carinata, B. juncea and B. napus.
    Uloth MB; Clode PL; You MP; Barbetti MJ
    Ann Bot; 2016 Jan; 117(1):79-95. PubMed ID: 26420204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between Brassica napus polygalacturonase inhibition proteins and Sclerotinia sclerotiorum polygalacturonase: implications for rapeseed resistance to fungal infection.
    Wang Z; Wan L; Zhang X; Xin Q; Song Y; Hong D; Sun Y; Yang G
    Planta; 2021 Jan; 253(2):34. PubMed ID: 33459878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated mRNA, sRNA, and degradome sequencing reveal oilseed rape complex responses to Sclerotinia sclerotiorum (Lib.) infection.
    Jian H; Ma J; Wei L; Liu P; Zhang A; Yang B; Li J; Xu X; Liu L
    Sci Rep; 2018 Jul; 8(1):10987. PubMed ID: 30030454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. fIdentification of B. napus small RNAs responsive to infection by a necrotrophic pathogen.
    Regmi R; Newman TE; Kamphuis LG; Derbyshire MC
    BMC Plant Biol; 2021 Aug; 21(1):366. PubMed ID: 34380425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The infection processes of Sclerotinia sclerotiorum in cotyledon tissue of a resistant and a susceptible genotype of Brassica napus.
    Garg H; Li H; Sivasithamparam K; Kuo J; Barbetti MJ
    Ann Bot; 2010 Dec; 106(6):897-908. PubMed ID: 20929899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA sequencing of Brassica napus reveals cellular redox control of Sclerotinia infection.
    Girard IJ; Tong C; Becker MG; Mao X; Huang J; de Kievit T; Fernando WGD; Liu S; Belmonte MF
    J Exp Bot; 2017 Nov; 68(18):5079-5091. PubMed ID: 29036633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of differential gene expression in Brassica napus cultivars infected with Sclerotinia sclerotiorum.
    Zhao J; Buchwaldt L; Rimmer SR; Sharpe A; McGregor L; Bekkaoui D; Hegedus D
    Mol Plant Pathol; 2009 Sep; 10(5):635-49. PubMed ID: 19694954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification of the NPR1-like gene family in Brassica napus and functional characterization of BnaNPR1 in resistance to Sclerotinia sclerotiorum.
    Wang Z; Ma LY; Li X; Zhao FY; Sarwar R; Cao J; Li YL; Ding LN; Zhu KM; Yang YH; Tan XL
    Plant Cell Rep; 2020 Jun; 39(6):709-722. PubMed ID: 32140767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.