These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Deletion of 2-aminoadipic semialdehyde synthase limits metabolite accumulation in cell and mouse models for glutaric aciduria type 1. Leandro J; Dodatko T; DeVita RJ; Chen H; Stauffer B; Yu C; Houten SM J Inherit Metab Dis; 2020 Nov; 43(6):1154-1164. PubMed ID: 32567100 [TBL] [Abstract][Full Text] [Related]
4. Multifactorial modulation of susceptibility to l-lysine in an animal model of glutaric aciduria type I. Sauer SW; Opp S; Komatsuzaki S; Blank AE; Mittelbronn M; Burgard P; Koeller DM; Okun JG; Kölker S Biochim Biophys Acta; 2015 May; 1852(5):768-77. PubMed ID: 25558815 [TBL] [Abstract][Full Text] [Related]
5. The lysine degradation pathway: Subcellular compartmentalization and enzyme deficiencies. Leandro J; Houten SM Mol Genet Metab; 2020; 131(1-2):14-22. PubMed ID: 32768327 [TBL] [Abstract][Full Text] [Related]
6. Generation of hiPSC lines from four glutaric aciduria type I (GA1) patients carrying pathogenic biallelic variants in GCDH. Schuurmans IME; van Karnebeek CDM; Hoogendoorn ADM; Ribes A; Nadif Kasri N; Garanto A Stem Cell Res; 2024 Sep; 79():103481. PubMed ID: 38924972 [TBL] [Abstract][Full Text] [Related]
7. The first knock-in rat model for glutaric aciduria type I allows further insights into pathophysiology in brain and periphery. Gonzalez Melo M; Remacle N; Cudré-Cung HP; Roux C; Poms M; Cudalbu C; Barroso M; Gersting SW; Feichtinger RG; Mayr JA; Costanzo M; Caterino M; Ruoppolo M; Rüfenacht V; Häberle J; Braissant O; Ballhausen D Mol Genet Metab; 2021 Jun; 133(2):157-181. PubMed ID: 33965309 [TBL] [Abstract][Full Text] [Related]
8. Therapeutic modulation of cerebral L-lysine metabolism in a mouse model for glutaric aciduria type I. Sauer SW; Opp S; Hoffmann GF; Koeller DM; Okun JG; Kölker S Brain; 2011 Jan; 134(Pt 1):157-70. PubMed ID: 20923787 [TBL] [Abstract][Full Text] [Related]
9. l-Carnitine prevents oxidative stress in striatum of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload. Guerreiro G; Amaral AU; Ribeiro RT; Faverzani J; Groehs AC; Sitta A; Deon M; Wajner M; Vargas CR Biochim Biophys Acta Mol Basis Dis; 2019 Sep; 1865(9):2420-2427. PubMed ID: 31181292 [TBL] [Abstract][Full Text] [Related]
10. An explanation for metabolite excretion in high- and low-excretor patients with glutaric acidemia type 1. Goodman SI; Woontner M Mol Genet Metab; 2019 Aug; 127(4):325-326. PubMed ID: 31324527 [No Abstract] [Full Text] [Related]
11. Mechanistic effects of amino acids and glucose in a novel glutaric aciduria type 1 cell model. Fu X; Gao H; Tian F; Gao J; Lou L; Liang Y; Ning Q; Luo X PLoS One; 2014; 9(10):e110181. PubMed ID: 25333616 [TBL] [Abstract][Full Text] [Related]
12. Reduction of Na+, K+-ATPase activity and expression in cerebral cortex of glutaryl-CoA dehydrogenase deficient mice: a possible mechanism for brain injury in glutaric aciduria type I. Amaral AU; Seminotti B; Cecatto C; Fernandes CG; Busanello EN; Zanatta Â; Kist LW; Bogo MR; de Souza DO; Woontner M; Goodman S; Koeller DM; Wajner M Mol Genet Metab; 2012 Nov; 107(3):375-82. PubMed ID: 22999741 [TBL] [Abstract][Full Text] [Related]
14. NRF2 mediates melanoma addiction to GCDH by modulating apoptotic signalling. Verma S; Crawford D; Khateb A; Feng Y; Sergienko E; Pathria G; Ma CT; Olson SH; Scott D; Murad R; Ruppin E; Jackson M; Ronai ZA Nat Cell Biol; 2022 Sep; 24(9):1422-1432. PubMed ID: 36050469 [TBL] [Abstract][Full Text] [Related]
15. Disease-causing mutations affecting surface residues of mitochondrial glutaryl-CoA dehydrogenase impair stability, heteromeric complex formation and mitochondria architecture. Schmiesing J; Lohmöller B; Schweizer M; Tidow H; Gersting SW; Muntau AC; Braulke T; Mühlhausen C Hum Mol Genet; 2017 Feb; 26(3):538-551. PubMed ID: 28062662 [TBL] [Abstract][Full Text] [Related]
16. Inherited Disorders of Lysine Metabolism: A Review. Bouchereau J; Schiff M J Nutr; 2020 Oct; 150(Suppl 1):2556S-2560S. PubMed ID: 33000154 [TBL] [Abstract][Full Text] [Related]
17. Striatal neuronal death mediated by astrocytes from the Gcdh-/- mouse model of glutaric acidemia type I. Olivera-Bravo S; Ribeiro CA; Isasi E; Trías E; Leipnitz G; Díaz-Amarilla P; Woontner M; Beck C; Goodman SI; Souza D; Wajner M; Barbeito L Hum Mol Genet; 2015 Aug; 24(16):4504-15. PubMed ID: 25968119 [TBL] [Abstract][Full Text] [Related]
18. Impairment of astrocytic glutaminolysis in glutaric aciduria type I. Komatsuzaki S; Ediga RD; Okun JG; Kölker S; Sauer SW J Inherit Metab Dis; 2018 Jan; 41(1):91-99. PubMed ID: 29098534 [TBL] [Abstract][Full Text] [Related]
19. A Korean patient with glutaric aciduria type 1 with a novel mutation in the glutaryl CoA dehydrogenase gene. Kim HS; Yu HJ; Lee J; Park HD; Kim JH; Shin HJ; Jin DK; Lee M Ann Clin Lab Sci; 2014; 44(2):213-6. PubMed ID: 24795062 [TBL] [Abstract][Full Text] [Related]
20. Effects of targeted suppression of glutaryl-CoA dehydrogenase by lentivirus-mediated shRNA and excessive intake of lysine on apoptosis in rat striatal neurons. Gao J; Zhang C; Fu X; Yi Q; Tian F; Ning Q; Luo X PLoS One; 2013; 8(5):e63084. PubMed ID: 23658800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]