BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32160390)

  • 1. Flavodoxin hydroquinone provides electrons for the ATP-dependent reactivation of protein-bound corrinoid cofactors.
    Kißling L; Greiser Y; Dürichen H; Studenik S
    FEBS J; 2020 Nov; 287(22):4971-4981. PubMed ID: 32160390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox potential changes during ATP-dependent corrinoid reduction determined by redox titrations with europium(II)-DTPA.
    Dürichen H; Diekert G; Studenik S
    Protein Sci; 2019 Oct; 28(10):1902-1908. PubMed ID: 31359509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrinoid activation by a RACE protein: studies on the interaction of the proteins involved.
    Nguyen HD; Studenik S; Diekert G
    FEMS Microbiol Lett; 2013 Aug; 345(1):31-8. PubMed ID: 23672517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of an O-demethylase of Desulfitobacterium hafniense DCB-2.
    Studenik S; Vogel M; Diekert G
    J Bacteriol; 2012 Jul; 194(13):3317-26. PubMed ID: 22522902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of Flavodoxin by Electron Bifurcation and Sodium Ion-dependent Reoxidation by NAD+ Catalyzed by Ferredoxin-NAD+ Reductase (Rnf).
    Chowdhury NP; Klomann K; Seubert A; Buckel W
    J Biol Chem; 2016 Jun; 291(23):11993-2002. PubMed ID: 27048649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of glutamate-59 hydrogen bonded to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Glutamate-59 is not responsible for the pH dependency but contributes to the stabilization of the flavin semiquinone.
    Bradley LH; Swenson RP
    Biochemistry; 1999 Sep; 38(38):12377-86. PubMed ID: 10493805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic regulation of a corrinoid-reducing metallo-ATPase by its substrates.
    Sperfeld M; Diekert G; Studenik S
    Mol Microbiol; 2014 May; 92(3):598-608. PubMed ID: 24646146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-dependent complex formation by an ATP-dependent activator of the corrinoid/iron-sulfur protein.
    Hennig SE; Jeoung JH; Goetzl S; Dobbek H
    Proc Natl Acad Sci U S A; 2012 Apr; 109(14):5235-40. PubMed ID: 22431597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Veratrol-O-demethylase of Acetobacterium dehalogenans: ATP-dependent reduction of the corrinoid protein.
    Siebert A; Schubert T; Engelmann T; Studenik S; Diekert G
    Arch Microbiol; 2005 Sep; 183(6):378-84. PubMed ID: 15968525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the [4Fe-4S] cluster in reductive activation of the cobalt center of the corrinoid iron-sulfur protein from Clostridium thermoaceticum during acetate biosynthesis.
    Menon S; Ragsdale SW
    Biochemistry; 1998 Apr; 37(16):5689-98. PubMed ID: 9548955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and characterization of the two flavodoxin proteins of Bacillus subtilis, YkuN and YkuP: biophysical properties and interactions with cytochrome P450 BioI.
    Lawson RJ; von Wachenfeldt C; Haq I; Perkins J; Munro AW
    Biochemistry; 2004 Oct; 43(39):12390-409. PubMed ID: 15449930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function of an unusual flavodoxin from the domain
    Prakash D; Iyer PR; Suharti S; Walters KA; Santiago-Martinez MG; Golbeck JH; Murakami KS; Ferry JG
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25917-25922. PubMed ID: 31801875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavodoxin with an air-stable flavin semiquinone in a green sulfur bacterium.
    Bertsova YV; Kulik LV; Mamedov MD; Baykov AA; Bogachev AV
    Photosynth Res; 2019 Nov; 142(2):127-136. PubMed ID: 31302833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of methionine 56 in the control of the oxidation-reduction potentials of the Clostridium beijerinckii flavodoxin: effects of substitutions by aliphatic amino acids and evidence for a role of sulfur-flavin interactions.
    Druhan LJ; Swenson RP
    Biochemistry; 1998 Jul; 37(27):9668-78. PubMed ID: 9657679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-dependent spectroscopic changes associated with the hydroquinone of FMN in flavodoxins.
    Yalloway GN; Mayhew SG; Malthouse JP; Gallagher ME; Curley GP
    Biochemistry; 1999 Mar; 38(12):3753-62. PubMed ID: 10090764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-directed mutagenesis of tyrosine-98 in the flavodoxin from Desulfovibrio vulgaris (Hildenborough): regulation of oxidation-reduction properties of the bound FMN cofactor by aromatic, solvent, and electrostatic interactions.
    Swenson RP; Krey GD
    Biochemistry; 1994 Jul; 33(28):8505-14. PubMed ID: 8031784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate and cofactor reactivity of a carbon monoxide dehydrogenase-corrinoid enzyme complex: stepwise reduction of iron-sulfur and corrinoid centers, the corrinoid Co2+/1+ redox midpoint potential, and overall synthesis of acetyl-CoA.
    Grahame DA
    Biochemistry; 1993 Oct; 32(40):10786-93. PubMed ID: 8399227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the electrostatic effect of the 5'-phosphate of the flavin mononucleotide cofactor on the oxidation--reduction potentials of the flavodoxin from desulfovibrio vulgaris (Hildenborough).
    Zhou Z; Swenson RP
    Biochemistry; 1996 Sep; 35(38):12443-54. PubMed ID: 8823179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron-transfer studies involving flavodoxin and a natural redox partner, the iron protein of nitrogenase. Conformational constraints on protein-protein interactions and the kinetics of electron transfer within the protein complex.
    Thorneley RN; Deistung J
    Biochem J; 1988 Jul; 253(2):587-95. PubMed ID: 3140782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The midpoint potentials for the oxidized-semiquinone couple for Gly57 mutants of the Clostridium beijerinckii flavodoxin correlate with changes in the hydrogen-bonding interaction with the proton on N(5) of the reduced flavin mononucleotide cofactor as measured by NMR chemical shift temperature dependencies.
    Chang FC; Swenson RP
    Biochemistry; 1999 Jun; 38(22):7168-76. PubMed ID: 10353827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.