BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32160390)

  • 21. Comparisons of wild-type and mutant flavodoxins from Anacystis nidulans. Structural determinants of the redox potentials.
    Hoover DM; Drennan CL; Metzger AL; Osborne C; Weber CH; Pattridge KA; Ludwig ML
    J Mol Biol; 1999 Dec; 294(3):725-43. PubMed ID: 10610792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diversity of cobalamin riboswitches in the corrinoid-producing organohalide respirer Desulfitobacterium hafniense.
    Choudhary PK; Duret A; Rohrbach-Brandt E; Holliger C; Sigel RK; Maillard J
    J Bacteriol; 2013 Nov; 195(22):5186-95. PubMed ID: 24039263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotrophic, nitrate-limiting conditions.
    Gutekunst K; Chen X; Schreiber K; Kaspar U; Makam S; Appel J
    J Biol Chem; 2014 Jan; 289(4):1930-7. PubMed ID: 24311779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Equilibrium and ultrafast kinetic studies manipulating electron transfer: A short-lived flavin semiquinone is not sufficient for electron bifurcation.
    Hoben JP; Lubner CE; Ratzloff MW; Schut GJ; Nguyen DMN; Hempel KW; Adams MWW; King PW; Miller AF
    J Biol Chem; 2017 Aug; 292(34):14039-14049. PubMed ID: 28615449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrogenase of Azotobacter vinelandii: kinetic analysis of the Fe protein redox cycle.
    Duyvis MG; Wassink H; Haaker H
    Biochemistry; 1998 Dec; 37(50):17345-54. PubMed ID: 9860849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proton-coupled electron transfer of flavodoxin immobilized on nanostructured tin dioxide electrodes: thermodynamics versus kinetics control of protein redox function.
    Astuti Y; Topoglidis E; Briscoe PB; Fantuzzi A; Gilardi G; Durrant JR
    J Am Chem Soc; 2004 Jun; 126(25):8001-9. PubMed ID: 15212550
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RamA, a protein required for reductive activation of corrinoid-dependent methylamine methyltransferase reactions in methanogenic archaea.
    Ferguson T; Soares JA; Lienard T; Gottschalk G; Krzycki JA
    J Biol Chem; 2009 Jan; 284(4):2285-95. PubMed ID: 19043046
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidation-reduction potentials of ferredoxin-NADP+ reductase and flavodoxin from Anabaena PCC 7119 and their electrostatic and covalent complexes.
    Pueyo JJ; Gomez-Moreno C; Mayhew SG
    Eur J Biochem; 1991 Dec; 202(3):1065-71. PubMed ID: 1765067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of vitamin B12 on formation of the tetrachloroethene reductive dehalogenase in Desulfitobacterium hafniense strain Y51.
    Reinhold A; Westermann M; Seifert J; von Bergen M; Schubert T; Diekert G
    Appl Environ Microbiol; 2012 Nov; 78(22):8025-32. PubMed ID: 22961902
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrostatic effects of surface acidic amino acid residues on the oxidation-reduction potentials of the flavodoxin from Desulfovibrio vulgaris (Hildenborough).
    Zhou Z; Swenson RP
    Biochemistry; 1995 Mar; 34(10):3183-92. PubMed ID: 7880813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flavodoxin from Wolinella succinogenes.
    Biel S; Klimmek O; Gross R; Kröger A
    Arch Microbiol; 1996 Aug; 166(2):122-7. PubMed ID: 8772174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissection of the caffeate respiratory chain in the acetogen Acetobacterium woodii: identification of an Rnf-type NADH dehydrogenase as a potential coupling site.
    Imkamp F; Biegel E; Jayamani E; Buckel W; Müller V
    J Bacteriol; 2007 Nov; 189(22):8145-53. PubMed ID: 17873051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flavodoxin hydroquinone reduces Azotobacter vinelandii Fe protein to the all-ferrous redox state with a S = 0 spin state.
    Lowery TJ; Wilson PE; Zhang B; Bunker J; Harrison RG; Nyborg AC; Thiriot D; Watt GD
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17131-6. PubMed ID: 17085583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystallographic investigation of the role of aspartate 95 in the modulation of the redox potentials of Desulfovibrio vulgaris flavodoxin.
    McCarthy AA; Walsh MA; Verma CS; O'Connell DP; Reinhold M; Yalloway GN; D'Arcy D; Higgins TM; Voordouw G; Mayhew SG
    Biochemistry; 2002 Sep; 41(36):10950-62. PubMed ID: 12206666
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemical and structural characterization of Azotobacter vinelandii flavodoxin II.
    Segal HM; Spatzal T; Hill MG; Udit AK; Rees DC
    Protein Sci; 2017 Oct; 26(10):1984-1993. PubMed ID: 28710816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of hydrogen bonding interactions to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin.
    Bradley LH; Swenson RP
    Biochemistry; 2001 Jul; 40(30):8686-95. PubMed ID: 11467928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopic characterization of active-site variants of the PduO-type ATP:corrinoid adenosyltransferase from Lactobacillus reuteri: insights into the mechanism of four-coordinate Co(II)corrinoid formation.
    Park K; Mera PE; Escalante-Semerena JC; Brunold TC
    Inorg Chem; 2012 Apr; 51(8):4482-94. PubMed ID: 22480351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A modified flavodoxin with altered redox potentials is less efficient in electron transfer to nitrogenase.
    Hofstetter W; DerVartanian DV
    Biochem Biophys Res Commun; 1985 Apr; 128(2):643-9. PubMed ID: 3857914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cloning, sequencing and expression of the gene for flavodoxin from Megasphaera elsdenii and the effects of removing the protein negative charge that is closest to N(1) of the bound FMN.
    Geoghegan SM; Mayhew SG; Yalloway GN; Butler G
    Eur J Biochem; 2000 Jul; 267(14):4434-44. PubMed ID: 10880967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of Escherichia coli cobalamin-dependent methionine synthase and its physiological partner flavodoxin: binding of flavodoxin leads to axial ligand dissociation from the cobalamin cofactor.
    Hoover DM; Jarrett JT; Sands RH; Dunham WR; Ludwig ML; Matthews RG
    Biochemistry; 1997 Jan; 36(1):127-38. PubMed ID: 8993326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.