These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
761 related articles for article (PubMed ID: 32160957)
1. Effect of MicroRNA-126a-3p on Bone Marrow Mesenchymal Stem Cells Repairing Blood-brain Barrier and Nerve Injury after Intracerebral Hemorrhage. Wang C; Cao J; Duan S; Xu R; Yu H; Huo X; Qian Y J Stroke Cerebrovasc Dis; 2020 May; 29(5):104748. PubMed ID: 32160957 [TBL] [Abstract][Full Text] [Related]
2. The inhibitory effect of mesenchymal stem cell on blood-brain barrier disruption following intracerebral hemorrhage in rats: contribution of TSG-6. Chen M; Li X; Zhang X; He X; Lai L; Liu Y; Zhu G; Li W; Li H; Fang Q; Wang Z; Duan C J Neuroinflammation; 2015 Apr; 12():61. PubMed ID: 25890011 [TBL] [Abstract][Full Text] [Related]
3. Effects of GDNF-Transfected Marrow Stromal Cells on Rats with Intracerebral Hemorrhage. Deng L; Gao X; Fan G; Yang C J Stroke Cerebrovasc Dis; 2019 Sep; 28(9):2555-2562. PubMed ID: 31248739 [TBL] [Abstract][Full Text] [Related]
4. MicroRNA-126-3p attenuates blood-brain barrier disruption, cerebral edema and neuronal injury following intracerebral hemorrhage by regulating PIK3R2 and Akt. Xi T; Jin F; Zhu Y; Wang J; Tang L; Wang Y; Liebeskind DS; He Z Biochem Biophys Res Commun; 2017 Dec; 494(1-2):144-151. PubMed ID: 29042193 [TBL] [Abstract][Full Text] [Related]
5. Bone marrow mesenchymal stem cells ameliorate neurological deficits and blood-brain barrier dysfunction after intracerebral hemorrhage in spontaneously hypertensive rats. Wang C; Fei Y; Xu C; Zhao Y; Pan Y Int J Clin Exp Pathol; 2015; 8(5):4715-24. PubMed ID: 26191161 [TBL] [Abstract][Full Text] [Related]
6. miR-27a-3p protects against blood-brain barrier disruption and brain injury after intracerebral hemorrhage by targeting endothelial aquaporin-11. Xi T; Jin F; Zhu Y; Wang J; Tang L; Wang Y; Liebeskind DS; Scalzo F; He Z J Biol Chem; 2018 Dec; 293(52):20041-20050. PubMed ID: 30337368 [TBL] [Abstract][Full Text] [Related]
9. miR-141-3p protects against blood-brain barrier disruption and brain injury after intracerebral hemorrhage by targeting ZEB2. Yu M; Tian T; Zhang J; Hu T J Clin Neurosci; 2022 May; 99():253-260. PubMed ID: 35306455 [TBL] [Abstract][Full Text] [Related]
10. MiR-18a Aggravates Intracranial Hemorrhage by Regulating RUNX1-Occludin/ZO-1 Axis to Increase BBB Permeability. Ren S; Wu G; Huang Y; Wang L; Li Y; Zhang Y J Stroke Cerebrovasc Dis; 2021 Aug; 30(8):105878. PubMed ID: 34077824 [TBL] [Abstract][Full Text] [Related]
11. Role of Exosomes Derived from miR-133b Modified MSCs in an Experimental Rat Model of Intracerebral Hemorrhage. Shen H; Yao X; Li H; Li X; Zhang T; Sun Q; Ji C; Chen G J Mol Neurosci; 2018 Mar; 64(3):421-430. PubMed ID: 29455449 [TBL] [Abstract][Full Text] [Related]
12. Exosomes Derived from MicroRNA-146a-5p-Enriched Bone Marrow Mesenchymal Stem Cells Alleviate Intracerebral Hemorrhage by Inhibiting Neuronal Apoptosis and Microglial M1 Polarization. Duan S; Wang F; Cao J; Wang C Drug Des Devel Ther; 2020; 14():3143-3158. PubMed ID: 32821084 [TBL] [Abstract][Full Text] [Related]
13. Extracellular vesicles derived from bone marrow mesenchymal stem cells alleviate neuroinflammation after diabetic intracerebral hemorrhage via the miR-183-5p/PDCD4/NLRP3 pathway. Ding H; Jia Y; Lv H; Chang W; Liu F; Wang D J Endocrinol Invest; 2021 Dec; 44(12):2685-2698. PubMed ID: 34024028 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of miR-17-5p promotes mesenchymal stem cells to repair spinal cord injury. Yue XH; Guo L; Wang ZY; Jia TH Eur Rev Med Pharmacol Sci; 2019 May; 23(9):3899-3907. PubMed ID: 31115018 [TBL] [Abstract][Full Text] [Related]
15. Therapeutic effect of mesenchymal stem cells in rats with intracerebral hemorrhage: reduced apoptosis and enhanced neuroprotection. Wang SP; Wang ZH; Peng DY; Li SM; Wang H; Wang XH Mol Med Rep; 2012 Oct; 6(4):848-54. PubMed ID: 22825663 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of MicroRNA-155 Supports Endothelial Tight Junction Integrity Following Oxygen-Glucose Deprivation. Pena-Philippides JC; Gardiner AS; Caballero-Garrido E; Pan R; Zhu Y; Roitbak T J Am Heart Assoc; 2018 Jun; 7(13):. PubMed ID: 29945912 [TBL] [Abstract][Full Text] [Related]
17. Mesenchymal Stem Cell-Derived Exosomal miR-150-3p Affects Intracerebral Hemorrhage By Regulating TRAF6/NF-κB Axis, Gut Microbiota and Metabolism. Sun J; Xu G Stem Cell Rev Rep; 2023 Aug; 19(6):1907-1921. PubMed ID: 37099039 [TBL] [Abstract][Full Text] [Related]
18. Differentiation and neurological benefit of the mesenchymal stem cells transplanted into the rat brain following intracerebral hemorrhage. Zhang H; Huang Z; Xu Y; Zhang S Neurol Res; 2006 Jan; 28(1):104-12. PubMed ID: 16464372 [TBL] [Abstract][Full Text] [Related]
19. Small Interfering RNA Targeting DMP1 Protects Mice Against Blood-Brain Barrier Disruption and Brain Injury After Intracerebral Hemorrhage. Shu Y; Huang J; Gao M; Gan S; Zhu S; Xu S; Yang Z; Liao Y; Lu W J Stroke Cerebrovasc Dis; 2021 Jun; 30(6):105760. PubMed ID: 33845422 [TBL] [Abstract][Full Text] [Related]
20. Transplantation of Flk-1+ human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and anti-inflammatory and angiogenesis effects in an intracerebral hemorrhage rat model. Bao XJ; Liu FY; Lu S; Han Q; Feng M; Wei JJ; Li GL; Zhao RC; Wang RZ Int J Mol Med; 2013 May; 31(5):1087-96. PubMed ID: 23468083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]