These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32161822)

  • 1. Boosting polyketides production in cell factories: Shared target-pathway for pharmaceutical polyketides engineering.
    Jin WB; Guo CJ
    Synth Syst Biotechnol; 2020 Mar; 5(1):35-36. PubMed ID: 32161822
    [No Abstract]   [Full Text] [Related]  

  • 2. Expanding the Chemical Palette of Industrial Microbes: Metabolic Engineering for Type III PKS-Derived Polyketides.
    Palmer CM; Alper HS
    Biotechnol J; 2019 Jan; 14(1):e1700463. PubMed ID: 30358143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering microbial cells for the biosynthesis of natural compounds of pharmaceutical significance.
    Jeandet P; Vasserot Y; Chastang T; Courot E
    Biomed Res Int; 2013; 2013():780145. PubMed ID: 23710459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinating precursor supply for pharmaceutical polyketide production in Streptomyces.
    Li S; Li Z; Pang S; Xiang W; Wang W
    Curr Opin Biotechnol; 2021 Jun; 69():26-34. PubMed ID: 33316577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering modular polyketide synthases for production of biofuels and industrial chemicals.
    Cai W; Zhang W
    Curr Opin Biotechnol; 2018 Apr; 50():32-38. PubMed ID: 28946011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Engineering and Synthetic Biology Approaches for the Heterologous Production of Aromatic Polyketides.
    Yang D; Eun H; Prabowo CPS
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Escherichia coli as a cell factory for heterologous production of nonribosomal peptides and polyketides.
    Li J; Neubauer P
    N Biotechnol; 2014 Dec; 31(6):579-85. PubMed ID: 24704144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis.
    Milke L; Marienhagen J
    Appl Microbiol Biotechnol; 2020 Jul; 104(14):6057-6065. PubMed ID: 32385515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering microbial factories for synthesis of value-added products.
    Du J; Shao Z; Zhao H
    J Ind Microbiol Biotechnol; 2011 Aug; 38(8):873-90. PubMed ID: 21526386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of plant natural products through engineered Yarrowia lipolytica.
    Muhammad A; Feng X; Rasool A; Sun W; Li C
    Biotechnol Adv; 2020 Nov; 43():107555. PubMed ID: 32422161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and engineering of the ethylmalonyl-CoA pathway towards the improved heterologous production of polyketides in Streptomyces venezuelae.
    Jung WS; Kim E; Yoo YJ; Ban YH; Kim EJ; Yoon YJ
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3701-13. PubMed ID: 24413979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica.
    Liu H; Marsafari M; Wang F; Deng L; Xu P
    Metab Eng; 2019 Dec; 56():60-68. PubMed ID: 31470116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of glycosylated polyketide biosynthesis.
    Pandey RP; Parajuli P; Sohng JK
    Emerg Top Life Sci; 2018 Oct; 2(3):389-403. PubMed ID: 33525788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic biology enabling access to designer polyketides.
    Malico AA; Nichols L; Williams GJ
    Curr Opin Chem Biol; 2020 Oct; 58():45-53. PubMed ID: 32758909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the amoeba Dictyostelium discoideum for biosynthesis of a cannabinoid precursor and other polyketides.
    Reimer C; Kufs JE; Rautschek J; Regestein L; Valiante V; Hillmann F
    Nat Biotechnol; 2022 May; 40(5):751-758. PubMed ID: 34992245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial physiological engineering increases the efficiency of microbial cell factories.
    Liu H; Qi Y; Zhou P; Ye C; Gao C; Chen X; Liu L
    Crit Rev Biotechnol; 2021 May; 41(3):339-354. PubMed ID: 33541146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining protein and metabolic engineering to construct efficient microbial cell factories.
    Xu N; Liu Y; Jiang H; Liu J; Ma Y
    Curr Opin Biotechnol; 2020 Dec; 66():27-35. PubMed ID: 32659683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering microbes for plant polyketide biosynthesis.
    Lussier FX; Colatriano D; Wiltshire Z; Page JE; Martin VJ
    Comput Struct Biotechnol J; 2012; 3():e201210020. PubMed ID: 24688680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and biotechnological application of novel regulatory genes involved in Streptomyces polyketide overproduction through reverse engineering strategy.
    Nah JH; Kim HJ; Lee HN; Lee MJ; Choi SS; Kim ES
    Biomed Res Int; 2013; 2013():549737. PubMed ID: 23555090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered Biosynthesis of Alkyne-Tagged Polyketides by Type I PKSs.
    Porterfield WB; Poenateetai N; Zhang W
    iScience; 2020 Mar; 23(3):100938. PubMed ID: 32146323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.