These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
833 related articles for article (PubMed ID: 32162004)
1. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction. Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004 [TBL] [Abstract][Full Text] [Related]
2. Radiomics risk score may be a potential imaging biomarker for predicting survival in isocitrate dehydrogenase wild-type lower-grade gliomas. Park CJ; Han K; Kim H; Ahn SS; Choi YS; Park YW; Chang JH; Kim SH; Jain R; Lee SK Eur Radiol; 2020 Dec; 30(12):6464-6474. PubMed ID: 32740813 [TBL] [Abstract][Full Text] [Related]
3. Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature. Li Y; Liu X; Qian Z; Sun Z; Xu K; Wang K; Fan X; Zhang Z; Li S; Wang Y; Jiang T Eur Radiol; 2018 Jul; 28(7):2960-2968. PubMed ID: 29404769 [TBL] [Abstract][Full Text] [Related]
4. MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting. Sakai Y; Yang C; Kihira S; Tsankova N; Khan F; Hormigo A; Lai A; Cloughesy T; Nael K Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121211 [TBL] [Abstract][Full Text] [Related]
5. Diffusion tensor imaging radiomics in lower-grade glioma: improving subtyping of isocitrate dehydrogenase mutation status. Park CJ; Choi YS; Park YW; Ahn SS; Kang SG; Chang JH; Kim SH; Lee SK Neuroradiology; 2020 Mar; 62(3):319-326. PubMed ID: 31820065 [TBL] [Abstract][Full Text] [Related]
6. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414 [TBL] [Abstract][Full Text] [Related]
7. Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low- and high-grade gliomas. Zhou H; Chang K; Bai HX; Xiao B; Su C; Bi WL; Zhang PJ; Senders JT; Vallières M; Kavouridis VK; Boaro A; Arnaout O; Yang L; Huang RY J Neurooncol; 2019 Apr; 142(2):299-307. PubMed ID: 30661193 [TBL] [Abstract][Full Text] [Related]
8. Impact of signal intensity normalization of MRI on the generalizability of radiomic-based prediction of molecular glioma subtypes. Foltyn-Dumitru M; Schell M; Rastogi A; Sahm F; Kessler T; Wick W; Bendszus M; Brugnara G; Vollmuth P Eur Radiol; 2024 Apr; 34(4):2782-2790. PubMed ID: 37672053 [TBL] [Abstract][Full Text] [Related]
9. Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Prediction. Bae S; Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK Radiology; 2018 Dec; 289(3):797-806. PubMed ID: 30277442 [TBL] [Abstract][Full Text] [Related]
10. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics for Prediction of H3K27M Mutation in Midline Gliomas. Kandemirli SG; Kocak B; Naganawa S; Ozturk K; Yip SSF; Chopra S; Rivetti L; Aldine AS; Jones K; Cayci Z; Moritani T; Sato TS World Neurosurg; 2021 Jul; 151():e78-e85. PubMed ID: 33819703 [TBL] [Abstract][Full Text] [Related]
11. Radiomic features from dynamic susceptibility contrast perfusion-weighted imaging improve the three-class prediction of molecular subtypes in patients with adult diffuse gliomas. Pei D; Guan F; Hong X; Liu Z; Wang W; Qiu Y; Duan W; Wang M; Sun C; Wang W; Wang X; Guo Y; Wang Z; Liu Z; Xing A; Guo Z; Luo L; Liu X; Cheng J; Zhang B; Zhang Z; Yan J Eur Radiol; 2023 May; 33(5):3455-3466. PubMed ID: 36853347 [TBL] [Abstract][Full Text] [Related]
12. The Value of Enhanced MR Radiomics in Estimating the IDH1 Genotype in High-Grade Gliomas. Niu L; Feng WH; Duan CF; Liu YC; Liu JH; Liu XJ Biomed Res Int; 2020; 2020():4630218. PubMed ID: 33163535 [TBL] [Abstract][Full Text] [Related]
13. Conventional magnetic resonance imaging-based radiomic signature predicts telomerase reverse transcriptase promoter mutation status in grade II and III gliomas. Jiang C; Kong Z; Zhang Y; Liu S; Liu Z; Chen W; Liu P; Liu D; Wang Y; Lyu Y; Zhao D; Wang Y; You H; Feng F; Ma W Neuroradiology; 2020 Jul; 62(7):803-813. PubMed ID: 32239241 [TBL] [Abstract][Full Text] [Related]
14. Radiomics-based machine learning methods for isocitrate dehydrogenase genotype prediction of diffuse gliomas. Wu S; Meng J; Yu Q; Li P; Fu S J Cancer Res Clin Oncol; 2019 Mar; 145(3):543-550. PubMed ID: 30719536 [TBL] [Abstract][Full Text] [Related]
15. Two-Stage Training Framework Using Multicontrast MRI Radiomics for Truong NCD; Bangalore Yogananda CG; Wagner BC; Holcomb JM; Reddy D; Saadat N; Hatanpaa KJ; Patel TR; Fei B; Lee MD; Jain R; Bruce RJ; Pinho MC; Madhuranthakam AJ; Maldjian JA Radiol Artif Intell; 2024 Jul; 6(4):e230218. PubMed ID: 38775670 [TBL] [Abstract][Full Text] [Related]
16. Machine learning: a useful radiological adjunct in determination of a newly diagnosed glioma's grade and IDH status. De Looze C; Beausang A; Cryan J; Loftus T; Buckley PG; Farrell M; Looby S; Reilly R; Brett F; Kearney H J Neurooncol; 2018 Sep; 139(2):491-499. PubMed ID: 29770897 [TBL] [Abstract][Full Text] [Related]
17. Diagnostic accuracy and potential covariates for machine learning to identify IDH mutations in glioma patients: evidence from a meta-analysis. Zhao J; Huang Y; Song Y; Xie D; Hu M; Qiu H; Chu J Eur Radiol; 2020 Aug; 30(8):4664-4674. PubMed ID: 32193643 [TBL] [Abstract][Full Text] [Related]
18. Magnetic resonance imaging-based radiomic features for extrapolating infiltration levels of immune cells in lower-grade gliomas. Zhang X; Liu S; Zhao X; Shi X; Li J; Guo J; Niedermann G; Luo R; Zhang X Strahlenther Onkol; 2020 Oct; 196(10):913-921. PubMed ID: 32025804 [TBL] [Abstract][Full Text] [Related]
19. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. Li Y; Qian Z; Xu K; Wang K; Fan X; Li S; Jiang T; Liu X; Wang Y Neuroimage Clin; 2018; 17():306-311. PubMed ID: 29527478 [TBL] [Abstract][Full Text] [Related]
20. Adding radiomics to the 2021 WHO updates may improve prognostic prediction for current IDH-wildtype histological lower-grade gliomas with known EGFR amplification and TERT promoter mutation status. Park YW; Kim S; Park CJ; Ahn SS; Han K; Kang SG; Chang JH; Kim SH; Lee SK Eur Radiol; 2022 Dec; 32(12):8089-8098. PubMed ID: 35763095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]