BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 32162247)

  • 1. Reverse Vaccinology and Its Applications.
    Kanampalliwar AM
    Methods Mol Biol; 2020; 2131():1-16. PubMed ID: 32162247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of
    Soltan MA; Magdy D; Solyman SM; Hanora A
    OMICS; 2020 Apr; 24(4):195-204. PubMed ID: 32286190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EpitoCore: Mining Conserved Epitope Vaccine Candidates in the Core Proteome of Multiple Bacteria Strains.
    Fiuza TS; Lima JPMS; de Souza GA
    Front Immunol; 2020; 11():816. PubMed ID: 32431712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-Group B Streptococcus Glycan-Conjugate Vaccines Using Pilus Protein GBS80 As Carrier and Antigen: Comparing Lysine and Tyrosine-directed Conjugation.
    Nilo A; Morelli L; Passalacqua I; Brogioni B; Allan M; Carboni F; Pezzicoli A; Zerbini F; Maione D; Fabbrini M; Romano MR; Hu QY; Margarit I; Berti F; Adamo R
    ACS Chem Biol; 2015 Jul; 10(7):1737-46. PubMed ID: 25906283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pangenome and immuno-proteomics analysis of Acinetobacter baumannii strains revealed the core peptide vaccine targets.
    Hassan A; Naz A; Obaid A; Paracha RZ; Naz K; Awan FM; Muhmmad SA; Janjua HA; Ahmad J; Ali A
    BMC Genomics; 2016 Sep; 17(1):732. PubMed ID: 27634541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reverse vaccinology and subtractive genomics-based putative vaccine targets identification for Burkholderia pseudomallei Bp1651.
    Hizbullah ; Nazir Z; Afridi SG; Shah M; Shams S; Khan A
    Microb Pathog; 2018 Dec; 125():219-229. PubMed ID: 30243554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach of virulome based reverse vaccinology for exploring and validating peptide-based vaccine candidates against the most troublesome nosocomial pathogen: Acinetobacter baumannii.
    Ahmad S; Azam SS
    J Mol Graph Model; 2018 Aug; 83():1-11. PubMed ID: 29753164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ReVac: a reverse vaccinology computational pipeline for prioritization of prokaryotic protein vaccine candidates.
    D'Mello A; Ahearn CP; Murphy TF; Tettelin H
    BMC Genomics; 2019 Dec; 20(1):981. PubMed ID: 31842745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-based vaccine development: a short cut for the future.
    Moriel DG; Scarselli M; Serino L; Mora M; Rappuoli R; Masignani V
    Hum Vaccin; 2008; 4(3):184-8. PubMed ID: 20686357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of potential antigens from non-classically secreted proteins and designing novel multitope peptide vaccine candidate against Brucella melitensis through reverse vaccinology and immunoinformatics approach.
    Vishnu US; Sankarasubramanian J; Gunasekaran P; Rajendhran J
    Infect Genet Evol; 2017 Nov; 55():151-158. PubMed ID: 28919551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Development of a Vaccine Against Meningococcus B Using Reverse Vaccinology.
    Masignani V; Pizza M; Moxon ER
    Front Immunol; 2019; 10():751. PubMed ID: 31040844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse Vaccinology: The Pathway from Genomes and Epitope Predictions to Tailored Recombinant Vaccines.
    Michalik M; Djahanshiri B; Leo JC; Linke D
    Methods Mol Biol; 2016; 1403():87-106. PubMed ID: 27076126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the Biological Relevance of Machine Learning Classifiers for Reverse Vaccinology.
    Heinson AI; Gunawardana Y; Moesker B; Hume CC; Vataga E; Hall Y; Stylianou E; McShane H; Williams A; Niranjan M; Woelk CH
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28157153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a universal group B Streptococcus vaccine using multistrain genome analysis.
    Tettelin H; Medini D; Donati C; Masignani V
    Expert Rev Vaccines; 2006 Oct; 5(5):687-94. PubMed ID: 17181441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reverse Vaccinology for Influenza A Virus: From Genome Sequencing to Vaccine Design.
    Di Salvatore V; Russo G; Pappalardo F
    Methods Mol Biol; 2023; 2673():401-410. PubMed ID: 37258929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunoinformatics:
    Bahrami AA; Payandeh Z; Khalili S; Zakeri A; Bandehpour M
    Int Rev Immunol; 2019; 38(6):307-322. PubMed ID: 31478759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse vaccinology approach to design a novel multi-epitope subunit vaccine against avian influenza A (H7N9) virus.
    Hasan M; Ghosh PP; Azim KF; Mukta S; Abir RA; Nahar J; Hasan Khan MM
    Microb Pathog; 2019 May; 130():19-37. PubMed ID: 30822457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Update on "Reverse Vaccinology": The Pathway from Genomes and Epitope Predictions to Tailored, Recombinant Vaccines.
    Michalik M; Djahanschiri B; Leo JC; Linke D
    Methods Mol Biol; 2022; 2412():45-71. PubMed ID: 34918241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Approaches to Vaccinology Made Possible by Advances in Next Generation Sequencing, Bioinformatics and Protein modeling.
    Woolums AR; Swiderski C
    Curr Issues Mol Biol; 2021; 42():605-634. PubMed ID: 33627518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum vaccinomics platforms to advance in vaccinology.
    de la Fuente J; Contreras M
    Front Immunol; 2023; 14():1172734. PubMed ID: 37398646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.