BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32162260)

  • 1. Immunoinformatic Identification of Potential Epitopes.
    Desai P; Tarwadi D; Pandya B; Yagnik B
    Methods Mol Biol; 2020; 2131():265-275. PubMed ID: 32162260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current progress of immunoinformatics approach harnessed for cellular- and antibody-dependent vaccine design.
    Kazi A; Chuah C; Majeed ABA; Leow CH; Lim BH; Leow CY
    Pathog Glob Health; 2018 May; 112(3):123-131. PubMed ID: 29528265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Reverse Vaccinology and Immunoinformatic Strategies for the Identification of Vaccine Candidates Against Shigella flexneri.
    Leow CY; Chuah C; Abdul Majeed AB; Mohd Nor N; Leow CH
    Methods Mol Biol; 2022; 2414():17-35. PubMed ID: 34784029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vaccine Design Against Leptospirosis Using an Immunoinformatic Approach.
    Lata KS; Vaghasia V; Bhairappanvar S; Patel S; Das J
    Methods Mol Biol; 2020; 2131():173-184. PubMed ID: 32162253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New tools, new approaches and new ideas for vaccine development.
    De Groot AS; Moise L
    Expert Rev Vaccines; 2007 Apr; 6(2):125-7. PubMed ID: 17408360
    [No Abstract]   [Full Text] [Related]  

  • 6. Epitope-based peptide vaccine design and target site depiction against Ebola viruses: an immunoinformatics study.
    Khan MA; Hossain MU; Rakib-Uz-Zaman SM; Morshed MN
    Scand J Immunol; 2015 Jul; 82(1):25-34. PubMed ID: 25857850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico design of a vaccine candidate based on autotransporters and HSP against the causal agent of shigellosis, Shigella flexneri.
    León Y; Zapata L; Salas-Burgos A; Oñate A
    Mol Immunol; 2020 May; 121():47-58. PubMed ID: 32163758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vaccines and Immunoinformatics for Vaccine Design.
    Joon S; Singla RK; Shen B
    Adv Exp Med Biol; 2022; 1368():95-110. PubMed ID: 35594022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Better Epitope Discovery, Precision Immune Engineering, and Accelerated Vaccine Design Using Immunoinformatics Tools.
    De Groot AS; Moise L; Terry F; Gutierrez AH; Hindocha P; Richard G; Hoft DF; Ross TM; Noe AR; Takahashi Y; Kotraiah V; Silk SE; Nielsen CM; Minassian AM; Ashfield R; Ardito M; Draper SJ; Martin WD
    Front Immunol; 2020; 11():442. PubMed ID: 32318055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunoinformatic Approaches for Vaccine Designing Against Viral Infections.
    Anand R; Raghuwanshi R
    Methods Mol Biol; 2020; 2131():277-288. PubMed ID: 32162261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided design of T-cell epitope-based vaccines: addressing population coverage.
    Oyarzun P; Kobe B
    Int J Immunogenet; 2015 Oct; 42(5):313-21. PubMed ID: 26211755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD4+ T cell epitope discovery and rational vaccine design.
    Rosa DS; Ribeiro SP; Cunha-Neto E
    Arch Immunol Ther Exp (Warsz); 2010 Apr; 58(2):121-30. PubMed ID: 20155490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico identification of immunodominant B-cell and T-cell epitopes of non-structural proteins of Usutu Virus.
    Satyam R; Janahi EM; Bhardwaj T; Somvanshi P; Haque S; Najm MZ
    Microb Pathog; 2018 Dec; 125():129-143. PubMed ID: 30217517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-cell epitope vaccine design by immunoinformatics.
    Patronov A; Doytchinova I
    Open Biol; 2013 Jan; 3(1):120139. PubMed ID: 23303307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epitope prediction and identification- adaptive T cell responses in humans.
    Sidney J; Peters B; Sette A
    Semin Immunol; 2020 Aug; 50():101418. PubMed ID: 33131981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Immunoinformatics Approach in Design of Synthetic Peptide Vaccine Against Influenza Virus.
    Lohia N; Baranwal M
    Methods Mol Biol; 2020; 2131():229-243. PubMed ID: 32162257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of epitope-based peptide vaccine candidates against enterotoxigenic Escherichia coli: a comparative genomics and immunoinformatics approach.
    Mehla K; Ramana J
    Mol Biosyst; 2016 Mar; 12(3):890-901. PubMed ID: 26766131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunoinformatic identification of the epitope-based vaccine candidates from Maltoporin, FepA and OmpW of Shigella Spp, with molecular docking confirmation.
    Ullah H; Mahmud S; Hossain MJ; Islam MSB; Kibria KMK
    Infect Genet Evol; 2021 Dec; 96():105129. PubMed ID: 34737105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of DNA vaccine-elicited CD8+ T-lymphocyte epitope immunodominance hierarchies.
    Liu J; Ewald BA; Lynch DM; Nanda A; Sumida SM; Barouch DH
    J Virol; 2006 Dec; 80(24):11991-7. PubMed ID: 17005652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches.
    Negahdaripour M; Eslami M; Nezafat N; Hajighahramani N; Ghoshoon MB; Shoolian E; Dehshahri A; Erfani N; Morowvat MH; Ghasemi Y
    Infect Genet Evol; 2017 Oct; 54():402-416. PubMed ID: 28780192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.