These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32162260)

  • 1. Immunoinformatic Identification of Potential Epitopes.
    Desai P; Tarwadi D; Pandya B; Yagnik B
    Methods Mol Biol; 2020; 2131():265-275. PubMed ID: 32162260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current progress of immunoinformatics approach harnessed for cellular- and antibody-dependent vaccine design.
    Kazi A; Chuah C; Majeed ABA; Leow CH; Lim BH; Leow CY
    Pathog Glob Health; 2018 May; 112(3):123-131. PubMed ID: 29528265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Reverse Vaccinology and Immunoinformatic Strategies for the Identification of Vaccine Candidates Against Shigella flexneri.
    Leow CY; Chuah C; Abdul Majeed AB; Mohd Nor N; Leow CH
    Methods Mol Biol; 2022; 2414():17-35. PubMed ID: 34784029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vaccine Design Against Leptospirosis Using an Immunoinformatic Approach.
    Lata KS; Vaghasia V; Bhairappanvar S; Patel S; Das J
    Methods Mol Biol; 2020; 2131():173-184. PubMed ID: 32162253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New tools, new approaches and new ideas for vaccine development.
    De Groot AS; Moise L
    Expert Rev Vaccines; 2007 Apr; 6(2):125-7. PubMed ID: 17408360
    [No Abstract]   [Full Text] [Related]  

  • 6. Epitope-based peptide vaccine design and target site depiction against Ebola viruses: an immunoinformatics study.
    Khan MA; Hossain MU; Rakib-Uz-Zaman SM; Morshed MN
    Scand J Immunol; 2015 Jul; 82(1):25-34. PubMed ID: 25857850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico design of a vaccine candidate based on autotransporters and HSP against the causal agent of shigellosis, Shigella flexneri.
    León Y; Zapata L; Salas-Burgos A; Oñate A
    Mol Immunol; 2020 May; 121():47-58. PubMed ID: 32163758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vaccines and Immunoinformatics for Vaccine Design.
    Joon S; Singla RK; Shen B
    Adv Exp Med Biol; 2022; 1368():95-110. PubMed ID: 35594022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Better Epitope Discovery, Precision Immune Engineering, and Accelerated Vaccine Design Using Immunoinformatics Tools.
    De Groot AS; Moise L; Terry F; Gutierrez AH; Hindocha P; Richard G; Hoft DF; Ross TM; Noe AR; Takahashi Y; Kotraiah V; Silk SE; Nielsen CM; Minassian AM; Ashfield R; Ardito M; Draper SJ; Martin WD
    Front Immunol; 2020; 11():442. PubMed ID: 32318055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunoinformatic Approaches for Vaccine Designing Against Viral Infections.
    Anand R; Raghuwanshi R
    Methods Mol Biol; 2020; 2131():277-288. PubMed ID: 32162261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided design of T-cell epitope-based vaccines: addressing population coverage.
    Oyarzun P; Kobe B
    Int J Immunogenet; 2015 Oct; 42(5):313-21. PubMed ID: 26211755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD4+ T cell epitope discovery and rational vaccine design.
    Rosa DS; Ribeiro SP; Cunha-Neto E
    Arch Immunol Ther Exp (Warsz); 2010 Apr; 58(2):121-30. PubMed ID: 20155490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico identification of immunodominant B-cell and T-cell epitopes of non-structural proteins of Usutu Virus.
    Satyam R; Janahi EM; Bhardwaj T; Somvanshi P; Haque S; Najm MZ
    Microb Pathog; 2018 Dec; 125():129-143. PubMed ID: 30217517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-cell epitope vaccine design by immunoinformatics.
    Patronov A; Doytchinova I
    Open Biol; 2013 Jan; 3(1):120139. PubMed ID: 23303307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epitope prediction and identification- adaptive T cell responses in humans.
    Sidney J; Peters B; Sette A
    Semin Immunol; 2020 Aug; 50():101418. PubMed ID: 33131981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Immunoinformatics Approach in Design of Synthetic Peptide Vaccine Against Influenza Virus.
    Lohia N; Baranwal M
    Methods Mol Biol; 2020; 2131():229-243. PubMed ID: 32162257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of epitope-based peptide vaccine candidates against enterotoxigenic Escherichia coli: a comparative genomics and immunoinformatics approach.
    Mehla K; Ramana J
    Mol Biosyst; 2016 Mar; 12(3):890-901. PubMed ID: 26766131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunoinformatic identification of the epitope-based vaccine candidates from Maltoporin, FepA and OmpW of Shigella Spp, with molecular docking confirmation.
    Ullah H; Mahmud S; Hossain MJ; Islam MSB; Kibria KMK
    Infect Genet Evol; 2021 Dec; 96():105129. PubMed ID: 34737105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of DNA vaccine-elicited CD8+ T-lymphocyte epitope immunodominance hierarchies.
    Liu J; Ewald BA; Lynch DM; Nanda A; Sumida SM; Barouch DH
    J Virol; 2006 Dec; 80(24):11991-7. PubMed ID: 17005652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches.
    Negahdaripour M; Eslami M; Nezafat N; Hajighahramani N; Ghoshoon MB; Shoolian E; Dehshahri A; Erfani N; Morowvat MH; Ghasemi Y
    Infect Genet Evol; 2017 Oct; 54():402-416. PubMed ID: 28780192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.