These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32162919)

  • 1. Aqueous Activated Graphene Dispersions for Deposition of High-Surface Area Supercapacitor Electrodes.
    Skrypnychuk V; Boulanger N; Nordenström A; Talyzin A
    J Phys Chem Lett; 2020 Apr; 11(8):3032-3038. PubMed ID: 32162919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-surface-area activated carbon from pine cones for semi-industrial spray deposition of supercapacitor electrodes.
    Nordenström A; Boulanger N; Iakunkov A; Li G; Mysyk R; Bracciale G; Bondavalli P; Talyzin AV
    Nanoscale Adv; 2022 Oct; 4(21):4689-4700. PubMed ID: 36341297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospray-deposition of graphene electrodes: a simple technique to build high-performance supercapacitors.
    Tang H; Yang C; Lin Z; Yang Q; Kang F; Wong CP
    Nanoscale; 2015 May; 7(20):9133-9. PubMed ID: 25896639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.
    Kim T; Jung G; Yoo S; Suh KS; Ruoff RS
    ACS Nano; 2013 Aug; 7(8):6899-905. PubMed ID: 23829569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Large-Sized Reduced Graphene Oxide with Low Charge-Transfer Resistance as a High-Performance Electrode for a Nonflammable High-Temperature Stable Ionic-Liquid-Based Supercapacitor.
    Ma L; Gao Q; Tian W; Zhang Q; Xiao H; Li Z; Zhang H; Tian X
    ChemSusChem; 2018 Dec; 11(23):4026-4032. PubMed ID: 30240155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes.
    Shen J; Yang C; Li X; Wang G
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8467-76. PubMed ID: 23931572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors.
    Zhang LL; Zhao X; Stoller MD; Zhu Y; Ji H; Murali S; Wu Y; Perales S; Clevenger B; Ruoff RS
    Nano Lett; 2012 Apr; 12(4):1806-12. PubMed ID: 22372529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode.
    Zhu G; He Z; Chen J; Zhao J; Feng X; Ma Y; Fan Q; Wang L; Huang W
    Nanoscale; 2014 Jan; 6(2):1079-85. PubMed ID: 24296659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
    Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC
    Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activated Graphene Deposited on Porous Cu Mesh for Supercapacitors.
    Lim T; Kim T; Suk JW
    Nanomaterials (Basel); 2021 Mar; 11(4):. PubMed ID: 33807356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SC-CO
    Sarno M; Baldino L; Scudieri C; Cardea S; Ciambelli P; Reverchon E
    Nanotechnology; 2017 May; 28(20):204001. PubMed ID: 28319034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-light Hierarchical Graphene Electrode for Binder-Free Supercapacitors and Lithium-Ion Battery Anodes.
    Zuo Z; Kim TY; Kholmanov I; Li H; Chou H; Li Y
    Small; 2015 Oct; 11(37):4922-30. PubMed ID: 26153327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical 3D All-Carbon Composite Structure Modified with N-Doped Graphene Quantum Dots for High-Performance Flexible Supercapacitors.
    Li Z; Liu X; Wang L; Bu F; Wei J; Pan D; Wu M
    Small; 2018 Sep; 14(39):e1801498. PubMed ID: 30151984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous carbon derived from herbal plant waste for supercapacitor electrodes with ultrahigh specific capacitance and excellent energy density.
    Zhang Y; Tang Z
    Waste Manag; 2020 Apr; 106():250-260. PubMed ID: 32240941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S/N-codoped carbon nanotubes and reduced graphene oxide aerogel based supercapacitors working in a wide temperature range.
    Lu Z; Liu X; Wang T; Huang X; Dou J; Wu D; Yu J; Wu S; Chen X
    J Colloid Interface Sci; 2023 May; 638():709-718. PubMed ID: 36780851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional graphitized carbon nanovesicles for high-performance supercapacitors based on ionic liquids.
    Peng C; Wen Z; Qin Y; Schmidt-Mende L; Li C; Yang S; Shi D; Yang J
    ChemSusChem; 2014 Mar; 7(3):777-84. PubMed ID: 24474720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel and facile synthesis approach for a porous carbon/graphene composite for high-performance supercapacitors.
    Liu T; Zhang X; Liu K; Liu Y; Liu M; Wu W; Gu Y; Zhang R
    Nanotechnology; 2018 Mar; 29(9):095401. PubMed ID: 29300179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic Comparison of Graphene Materials for Supercapacitor Electrodes.
    Le Fevre LW; Cao J; Kinloch IA; Forsyth AJ; Dryfe RAW
    ChemistryOpen; 2019 Apr; 8(4):418-428. PubMed ID: 30984485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercapacitors based on self-assembled graphene organogel.
    Sun Y; Wu Q; Shi G
    Phys Chem Chem Phys; 2011 Oct; 13(38):17249-54. PubMed ID: 21879072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Assembled 3D Graphene-Based Aerogel with Co3 O4 Nanoparticles as High-Performance Asymmetric Supercapacitor Electrode.
    Xie L; Su F; Xie L; Li X; Liu Z; Kong Q; Guo X; Zhang Y; Wan L; Li K; Lv C; Chen C
    ChemSusChem; 2015 Sep; 8(17):2917-26. PubMed ID: 26014119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.