These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 32163142)

  • 41. REPRODUCTIVE ISOLATION BETWEEN SYMPATRIC RACES OF PEA APHIDS. I. GENE FLOW RESTRICTION AND HABITAT CHOICE.
    Via S
    Evolution; 1999 Oct; 53(5):1446-1457. PubMed ID: 28565574
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The pea aphid, Acyrthosiphon pisum: an emerging genomic model system for ecological, developmental and evolutionary studies.
    Brisson JA; Stern DL
    Bioessays; 2006 Jul; 28(7):747-55. PubMed ID: 16850403
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Large gene family expansions and adaptive evolution for odorant and gustatory receptors in the pea aphid, Acyrthosiphon pisum.
    Smadja C; Shi P; Butlin RK; Robertson HM
    Mol Biol Evol; 2009 Sep; 26(9):2073-86. PubMed ID: 19542205
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predation determines different selective pressure on pea aphid host races in a complex agricultural mosaic.
    Balog A; Schmitz OJ
    PLoS One; 2013; 8(2):e55900. PubMed ID: 23409081
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identifying genomic hotspots of differentiation and candidate genes involved in the adaptive divergence of pea aphid host races.
    Nouhaud P; Gautier M; Gouin A; Jaquiéry J; Peccoud J; Legeai F; Mieuzet L; Smadja CM; Lemaitre C; Vitalis R; Simon JC
    Mol Ecol; 2018 Jul; ():. PubMed ID: 30010213
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reproductive isolation between divergent races of pea aphids on two hosts. II. Selection against migrants and hybrids in the parental environments.
    Via S; Bouck AC; Skillman S
    Evolution; 2000 Oct; 54(5):1626-37. PubMed ID: 11108590
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of Endosymbiont Disruption on the Nutritional Dynamics of the Pea Aphid
    Lv N; Wang L; Sang W; Liu CZ; Qiu BL
    Insects; 2018 Nov; 9(4):. PubMed ID: 30423824
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex.
    Peccoud J; Ollivier A; Plantegenest M; Simon JC
    Proc Natl Acad Sci U S A; 2009 May; 106(18):7495-500. PubMed ID: 19380742
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Candidate genetic determinants of intraspecific variation in pea aphid susceptibility to RNA interference.
    Yoon JS; Tian HG; McMullen JG; Chung SH; Douglas AE
    Insect Biochem Mol Biol; 2020 Aug; 123():103408. PubMed ID: 32446747
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Facultative symbionts are associated with host plant specialization in pea aphid populations.
    Leonardo TE; Muiru GT
    Proc Biol Sci; 2003 Nov; 270 Suppl 2(Suppl 2):S209-12. PubMed ID: 14667385
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Similar patterns of linkage disequilibrium and nucleotide diversity in native and introduced populations of the pea aphid, Acyrthosiphon pisum.
    Brisson JA; Nuzhdin SV; Stern DL
    BMC Genet; 2009 May; 10():22. PubMed ID: 19470181
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phenoloxidases are required for the pea aphid's defence against bacterial and fungal infection.
    Xu L; Ma L; Wang W; Li L; Lu Z
    Insect Mol Biol; 2019 Apr; 28(2):176-186. PubMed ID: 30182435
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The anatomy of an aphid genome: from sequence to biology.
    Tagu D; Dugravot S; Outreman Y; Rispe C; Simon JC; Colella S
    C R Biol; 2010; 333(6-7):464-73. PubMed ID: 20541158
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Insect and plant-derived miRNAs in greenbug (Schizaphis graminum) and yellow sugarcane aphid (Sipha flava) revealed by deep sequencing.
    Wang H; Zhang C; Dou Y; Yu B; Liu Y; Heng-Moss TM; Lu G; Wachholtz M; Bradshaw JD; Twigg P; Scully E; Palmer N; Sarath G
    Gene; 2017 Jan; 599():68-77. PubMed ID: 27838454
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in Aphid Host Plant Diet Influence the Small-RNA Expression Profiles of Its Obligate Nutritional Symbiont,
    Thairu MW; Hansen AK
    mBio; 2019 Nov; 10(6):. PubMed ID: 31744912
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Non-consumptive effects stabilize herbivore control over multiple generations.
    Ingerslew KS; Finke DL
    PLoS One; 2020; 15(11):e0241870. PubMed ID: 33170896
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic evidence from mitochondrial, nuclear, and endosymbiont markers for the evolution of host plant associated species in the aphid genus Hyalopterus (Hemiptera: Aphididae).
    Lozier JD; Roderick GK; Mills NJ
    Evolution; 2007 Jun; 61(6):1353-67. PubMed ID: 17542845
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of a simple plant morphological mutation on the arthropod community and the impacts of predators on a principal insect herbivore.
    Rutledge CE; Robinson AP; Eigenbrode SD
    Oecologia; 2003 Mar; 135(1):39-50. PubMed ID: 12647102
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DNA barcoding reveals a mysterious high species diversity of conifer-feeding aphids in the mountains of southwest China.
    Chen R; Jiang LY; Chen J; Qiao GX
    Sci Rep; 2016 Feb; 6():20123. PubMed ID: 26838797
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low genetic diversity among pea aphid (Acyrthosiphon pisum) biotypes of different plant affiliation.
    Birkle LM; Douglas AE
    Heredity (Edinb); 1999 Jun; 82 ( Pt 6)():605-12. PubMed ID: 10383681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.