These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 32163263)
1. Quantifying Diffusion through Interfaces of Lithium-Ion Battery Active Materials. Benedek P; Forslund OK; Nocerino E; Yazdani N; Matsubara N; Sassa Y; Jurànyi F; Medarde M; Telling M; Månsson M; Wood V ACS Appl Mater Interfaces; 2020 Apr; 12(14):16243-16249. PubMed ID: 32163263 [TBL] [Abstract][Full Text] [Related]
2. Janus Solid-Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries. Zheng J; Hou Y; Duan Y; Song X; Wei Y; Liu T; Hu J; Guo H; Zhuo Z; Liu L; Chang Z; Wang X; Zherebetskyy D; Fang Y; Lin Y; Xu K; Wang LW; Wu Y; Pan F Nano Lett; 2015 Sep; 15(9):6102-9. PubMed ID: 26305572 [TBL] [Abstract][Full Text] [Related]
3. Surface Modification of the LiFePO Tron A; Jo YN; Oh SH; Park YD; Mun J ACS Appl Mater Interfaces; 2017 Apr; 9(14):12391-12399. PubMed ID: 28322545 [TBL] [Abstract][Full Text] [Related]
4. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
5. Effect of Nanophase Li₃PO₄ and Li₄P₂O Liu S; Wang H; Gao J; He J; Yu G; Zhou T J Nanosci Nanotechnol; 2018 May; 18(5):3631-3638. PubMed ID: 29442877 [TBL] [Abstract][Full Text] [Related]
6. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Zhu Y; Xu Y; Liu Y; Luo C; Wang C Nanoscale; 2013 Jan; 5(2):780-7. PubMed ID: 23235803 [TBL] [Abstract][Full Text] [Related]
7. Addressing the Interface Issues in All-Solid-State Bulk-Type Lithium Ion Battery via an All-Composite Approach. Chen RJ; Zhang YB; Liu T; Xu BQ; Lin YH; Nan CW; Shen Y ACS Appl Mater Interfaces; 2017 Mar; 9(11):9654-9661. PubMed ID: 28244733 [TBL] [Abstract][Full Text] [Related]
8. Blocking Directional Lithium Diffusion in Solid-State Electrolytes at the Interface: First-Principles Insights into the Impact of the Space Charge Layer. Dobhal G; Walsh TR; Tawfik SA ACS Appl Mater Interfaces; 2022 Dec; 14(50):55471-55479. PubMed ID: 36472502 [TBL] [Abstract][Full Text] [Related]
9. High-Performance All-Solid-State Polymer Electrolyte with Controllable Conductivity Pathway Formed by Self-Assembly of Reactive Discogen and Immobilized via a Facile Photopolymerization for a Lithium-Ion Battery. Wang S; Liu X; Wang A; Wang Z; Chen J; Zeng Q; Jiang X; Zhou H; Zhang L ACS Appl Mater Interfaces; 2018 Aug; 10(30):25273-25284. PubMed ID: 29975039 [TBL] [Abstract][Full Text] [Related]
11. Poly(ethylene oxide)-co-poly(propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries. Wang SH; Hou SS; Kuo PL; Teng H ACS Appl Mater Interfaces; 2013 Sep; 5(17):8477-85. PubMed ID: 23931907 [TBL] [Abstract][Full Text] [Related]
12. Relevant Features of a Triethylene Glycol Dimethyl Ether-Based Electrolyte for Application in Lithium Battery. Carbone L; Di Lecce D; Gobet M; Munoz S; Devany M; Greenbaum S; Hassoun J ACS Appl Mater Interfaces; 2017 May; 9(20):17085-17095. PubMed ID: 28440629 [TBL] [Abstract][Full Text] [Related]
13. Interface Limited Lithium Transport in Solid-State Batteries. Santhanagopalan D; Qian D; McGilvray T; Wang Z; Wang F; Camino F; Graetz J; Dudney N; Meng YS J Phys Chem Lett; 2014 Jan; 5(2):298-303. PubMed ID: 26270703 [TBL] [Abstract][Full Text] [Related]
14. Preparation of V-Doped LiFePO4/C as the Optimized Cathode Material for Lithium Ion Batteries. Sun P; Zhang H; Shen K; Fan Q; Xu Q J Nanosci Nanotechnol; 2015 Apr; 15(4):2667-72. PubMed ID: 26353479 [TBL] [Abstract][Full Text] [Related]
15. Polypropylene Carbonate-Based Adaptive Buffer Layer for Stable Interfaces of Solid Polymer Lithium Metal Batteries. Yang H; Zhang Y; Tennenbaum MJ; Althouse Z; Ma Y; He Y; Wu Y; Wu TH; Mathur A; Chen P; Huang Y; Fernandez-Nieves A; Kohl PA; Liu N ACS Appl Mater Interfaces; 2019 Aug; 11(31):27906-27912. PubMed ID: 31298521 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and Electrochemical Properties of LiFePO4/C for Lithium Ion Batteries. Gao H; Wang J; Yin S; Zheng H; Wang S; Feng C; Wang S J Nanosci Nanotechnol; 2015 Mar; 15(3):2253-7. PubMed ID: 26413648 [TBL] [Abstract][Full Text] [Related]
17. Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Li Y; Zhou W; Chen X; Lü X; Cui Z; Xin S; Xue L; Jia Q; Goodenough JB Proc Natl Acad Sci U S A; 2016 Nov; 113(47):13313-13317. PubMed ID: 27821751 [TBL] [Abstract][Full Text] [Related]
18. Dynamic imaging of lithium in solid-state batteries by operando electron energy-loss spectroscopy with sparse coding. Nomura Y; Yamamoto K; Fujii M; Hirayama T; Igaki E; Saitoh K Nat Commun; 2020 Jun; 11(1):2824. PubMed ID: 32499493 [TBL] [Abstract][Full Text] [Related]
19. Thin film rechargeable electrodes based on conductive blends of nanostructured olivine LiFePO4 and sucrose derived nanocarbons for lithium ion batteries. Praveen P; Jyothsna U; Nair P; Ravi S; Balakrishnan A; Subramanian KR; Nair AS; Nair VS; Sivakumar N J Nanosci Nanotechnol; 2013 Aug; 13(8):5607-12. PubMed ID: 23882803 [TBL] [Abstract][Full Text] [Related]
20. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry. Kasnatscheew J; Wagner R; Winter M; Cekic-Laskovic I Top Curr Chem (Cham); 2018 Apr; 376(3):16. PubMed ID: 29671099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]