BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 32163460)

  • 1. Comparative transcriptomic analysis reveals novel roles of transcription factors and hormones during the flowering induction and floral bud differentiation in sweet cherry trees (Prunus avium L. cv. Bing).
    Villar L; Lienqueo I; Llanes A; Rojas P; Perez J; Correa F; Sagredo B; Masciarelli O; Luna V; Almada R
    PLoS One; 2020; 15(3):e0230110. PubMed ID: 32163460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sweet cherry (Prunus avium) FLOWERING LOCUS T gene is expressed during floral bud determination and can promote flowering in a winter-annual Arabidopsis accession.
    Yarur A; Soto E; León G; Almeida AM
    Plant Reprod; 2016 Dec; 29(4):311-322. PubMed ID: 27878597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From bud formation to flowering: transcriptomic state defines the cherry developmental phases of sweet cherry bud dormancy.
    Vimont N; Fouché M; Campoy JA; Tong M; Arkoun M; Yvin JC; Wigge PA; Dirlewanger E; Cortijo S; Wenden B
    BMC Genomics; 2019 Dec; 20(1):974. PubMed ID: 31830909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SVP-like gene PavSVP potentially suppressing flowering with PavSEP, PavAP1, and PavJONITLESS in sweet cherries (Prunus avium L.).
    Wang J; Jiu S; Xu Y; Sabir IA; Wang L; Ma C; Xu W; Wang S; Zhang C
    Plant Physiol Biochem; 2021 Feb; 159():277-284. PubMed ID: 33412415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MYB transcription factor family in sweet cherry (Prunus avium L.): genome-wide investigation, evolution, structure, characterization and expression patterns.
    Sabir IA; Manzoor MA; Shah IH; Liu X; Zahid MS; Jiu S; Wang J; Abdullah M; Zhang C
    BMC Plant Biol; 2022 Jan; 22(1):2. PubMed ID: 34979911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meta-analysis of RNA-Seq studies reveals genes with dominant functions during flower bud endo- to eco-dormancy transition in Prunus species.
    Canton M; Forestan C; Bonghi C; Varotto S
    Sci Rep; 2021 Jun; 11(1):13173. PubMed ID: 34162991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA methylation and small interference RNAs participate in the regulation of MADS-box genes involved in dormancy in sweet cherry (Prunus avium L.).
    Rothkegel K; Sánchez E; Montes C; Greve M; Tapia S; Bravo S; Prieto H; Almeida AM
    Tree Physiol; 2017 Dec; 37(12):1739-1751. PubMed ID: 28541567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dormancy-Associated MADS-Box (
    Wang J; Gao Z; Li H; Jiu S; Qu Y; Wang L; Ma C; Xu W; Wang S; Zhang C
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32019252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative RNA-sequencing-based transcriptome profiling of buds from profusely flowering 'Qinguan' and weakly flowering 'Nagafu no. 2' apple varieties reveals novel insights into the regulatory mechanisms underlying floral induction.
    Chen X; Qi S; Zhang D; Li Y; An N; Zhao C; Zhao J; Shah K; Han M; Xing L
    BMC Plant Biol; 2018 Dec; 18(1):370. PubMed ID: 30577771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling the effect of gibberellin-induced iron oxide nanoparticles on bud dormancy release in sweet cherry (Prunus avium L.).
    Sabir IA; Manzoor MA; Shah IH; Ahmad Z; Liu X; Alam P; Wang Y; Sun W; Wang J; Liu R; Jiu S; Zhang C
    Plant Physiol Biochem; 2024 Jan; 206():108222. PubMed ID: 38016371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome Analysis of
    He W; Chen Y; Gao M; Zhao Y; Xu Z; Cao P; Zhang Q; Jiao Y; Li H; Wu L; Wang Y
    G3 (Bethesda); 2018 Mar; 8(4):1103-1114. PubMed ID: 29487185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.).
    Shen X; Zhao K; Liu L; Zhang K; Yuan H; Liao X; Wang Q; Guo X; Li F; Li T
    Plant Cell Physiol; 2014 May; 55(5):862-80. PubMed ID: 24443499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription profiles reveal the regulatory mechanisms of spur bud changes and flower induction in response to shoot bending in apple (Malus domestica Borkh.).
    Xing L; Zhang D; Qi S; Chen X; An N; Li Y; Zhao C; Han M; Zhao J
    Plant Mol Biol; 2019 Jan; 99(1-2):45-66. PubMed ID: 30519825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold induced genes (CIGs) regulate flower development and dormancy in Prunus avium L.
    Wang J; Liu X; Sun W; Xu Y; Sabir IA; Abdullah M; Wang S; Jiu S; Zhang C
    Plant Sci; 2021 Dec; 313():111061. PubMed ID: 34763854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus).
    Zhu Y; Li Y; Xin D; Chen W; Shao X; Wang Y; Guo W
    Gene; 2015 Jan; 555(2):362-76. PubMed ID: 25447903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Integrative Analysis of Transcriptome, Proteome and Hormones Reveals Key Differentially Expressed Genes and Metabolic Pathways Involved in Flower Development in Loquat.
    Jing D; Chen W; Hu R; Zhang Y; Xia Y; Wang S; He Q; Guo Q; Liang G
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32698310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flower development in Coffea arabica L.: new insights into MADS-box genes.
    de Oliveira RR; Cesarino I; Mazzafera P; Dornelas MC
    Plant Reprod; 2014 Jun; 27(2):79-94. PubMed ID: 24715004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNAseq reveals different transcriptomic responses to GA
    Kuhn N; Maldonado J; Ponce C; Arellano M; Time A; Multari S; Martens S; Carrera E; Donoso JM; Sagredo B; Meisel LA
    Sci Rep; 2021 Jun; 11(1):13075. PubMed ID: 34158527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic analysis reveals the regulatory module of apple (Malus × domestica) floral transition in response to 6-BA.
    Li Y; Zhang D; An N; Fan S; Zuo X; Zhang X; Zhang L; Gao C; Han M; Xing L
    BMC Plant Biol; 2019 Mar; 19(1):93. PubMed ID: 30841918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional conservation and divergence of five SEPALLATA-like genes from a basal eudicot tree, Platanus acerifolia.
    Zhang S; Lu S; Yi S; Han H; Liu L; Zhang J; Bao M; Liu G
    Planta; 2017 Feb; 245(2):439-457. PubMed ID: 27833998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.