These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32163471)

  • 1. Are bacteria potential sources of fish environmental DNA?
    Nukazawa K; Akahoshi K; Suzuki Y
    PLoS One; 2020; 15(3):e0230174. PubMed ID: 32163471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear relationship between Silver Carp density and their eDNA concentration in a large river.
    Coulter DP; Wang P; Coulter AA; Van Susteren GE; Eichmiller JJ; Garvey JE; Sorensen PW
    PLoS One; 2019; 14(6):e0218823. PubMed ID: 31242242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between the distribution of common carp and their environmental DNA in a small lake.
    Eichmiller JJ; Bajer PG; Sorensen PW
    PLoS One; 2014; 9(11):e112611. PubMed ID: 25383965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diazinon negatively affects the integrity of environmental DNA stability: a case study with common carp (Cyprinus carpio).
    Pourmoghadam MN; Poorbagher H; de Oliveira Fernandes JM; Jafari O
    Environ Monit Assess; 2019 Oct; 191(11):672. PubMed ID: 31650301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating the Advection and Degradation of the Environmental DNA of Common Carp along a River.
    Nukazawa K; Hamasuna Y; Suzuki Y
    Environ Sci Technol; 2018 Sep; 52(18):10562-10570. PubMed ID: 30102525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water temperature-dependent degradation of environmental DNA and its relation to bacterial abundance.
    Tsuji S; Ushio M; Sakurai S; Minamoto T; Yamanaka H
    PLoS One; 2017; 12(4):e0176608. PubMed ID: 28448613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of fish biomass using environmental DNA.
    Takahara T; Minamoto T; Yamanaka H; Doi H; Kawabata Z
    PLoS One; 2012; 7(4):e35868. PubMed ID: 22563411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terrestrial mammal surveillance using hybridization capture of environmental DNA from African waterholes.
    Seeber PA; McEwen GK; Löber U; Förster DW; East ML; Melzheimer J; Greenwood AD
    Mol Ecol Resour; 2019 Nov; 19(6):1486-1496. PubMed ID: 31349392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting downstream transport distance of fish eDNA in lotic environments.
    Pont D
    Mol Ecol Resour; 2024 May; 24(4):e13934. PubMed ID: 38318749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Temperature and Trophic State on Degradation of Environmental DNA in Lake Water.
    Eichmiller JJ; Best SE; Sorensen PW
    Environ Sci Technol; 2016 Feb; 50(4):1859-67. PubMed ID: 26771292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can we manage fisheries with the inherent uncertainty from eDNA?
    Jerde CL
    J Fish Biol; 2021 Feb; 98(2):341-353. PubMed ID: 31769024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Making sense of the noise: The effect of hydrology on silver carp eDNA detection in the Chicago area waterway system.
    Song JW; Small MJ; Casman EA
    Sci Total Environ; 2017 Dec; 605-606():713-720. PubMed ID: 28675881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of environmental DNA sampling for determination of Ceratonova shasta (Cnidaria: Myxozoa) distribution in Plumas National Forest, CA.
    Richey CA; Kenelty KV; Hopkins KVS; Stevens BN; Martínez-López B; Hallett SL; Atkinson SD; Bartholomew JL; Soto E
    Parasitol Res; 2020 Mar; 119(3):859-870. PubMed ID: 31897785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water.
    Holman LE; de Bruyn M; Creer S; Carvalho G; Robidart J; Rius M
    Sci Rep; 2019 Aug; 9(1):11559. PubMed ID: 31399606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aquatic suspended particulate matter as source of eDNA for fish metabarcoding.
    Díaz C; Wege FF; Tang CQ; Crampton-Platt A; Rüdel H; Eilebrecht E; Koschorreck J
    Sci Rep; 2020 Sep; 10(1):14352. PubMed ID: 32873823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data.
    Merkes CM; McCalla SG; Jensen NR; Gaikowski MP; Amberg JJ
    PLoS One; 2014; 9(11):e113346. PubMed ID: 25402206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear internal transcribed spacer-1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio.
    Minamoto T; Uchii K; Takahara T; Kitayoshi T; Tsuji S; Yamanaka H; Doi H
    Mol Ecol Resour; 2017 Mar; 17(2):324-333. PubMed ID: 27487846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optimised eDNA protocol for detecting fish in lentic and lotic freshwaters using a small water volume.
    Muha TP; Robinson CV; Garcia de Leaniz C; Consuegra S
    PLoS One; 2019; 14(7):e0219218. PubMed ID: 31314760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A probabilistic model for designing and assessing the performance of eDNA sampling protocols.
    Song JW; Schultz MT; Casman EA; Bockrath KD; Mize E; Monroe EM; Tuttle-Lau M; Small MJ
    Mol Ecol Resour; 2020 Mar; 20(2):404-414. PubMed ID: 31677222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental conditions influence eDNA persistence in aquatic systems.
    Barnes MA; Turner CR; Jerde CL; Renshaw MA; Chadderton WL; Lodge DM
    Environ Sci Technol; 2014; 48(3):1819-27. PubMed ID: 24422450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.