These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 32163701)
1. Formation and Transport of Cr(III)-NOM-Fe Colloids upon Reaction of Cr(VI) with NOM-Fe(II) Colloids at Anoxic-Oxic Interfaces. Liao P; Pan C; Ding W; Li W; Yuan S; Fortner JD; Giammar DE Environ Sci Technol; 2020 Apr; 54(7):4256-4266. PubMed ID: 32163701 [TBL] [Abstract][Full Text] [Related]
2. Reduced NOM triggered rapid Cr(VI) reduction and formation of NOM-Cr(III) colloids in anoxic environments. Li B; Liao P; Xie L; Li Q; Pan C; Ning Z; Liu C Water Res; 2020 Aug; 181():115923. PubMed ID: 32422451 [TBL] [Abstract][Full Text] [Related]
3. Formation, Aggregation, and Deposition Dynamics of NOM-Iron Colloids at Anoxic-Oxic Interfaces. Liao P; Li W; Jiang Y; Wu J; Yuan S; Fortner JD; Giammar DE Environ Sci Technol; 2017 Nov; 51(21):12235-12245. PubMed ID: 28992695 [TBL] [Abstract][Full Text] [Related]
4. Formation and stability of NOM-Mn(III) colloids in aquatic environments. Li Q; Xie L; Jiang Y; Fortner JD; Yu K; Liao P; Liu C Water Res; 2019 Feb; 149():190-201. PubMed ID: 30447524 [TBL] [Abstract][Full Text] [Related]
5. Effect of Humic Acid on the Removal of Chromium(VI) and the Production of Solids in Iron Electrocoagulation. Pan C; Troyer LD; Liao P; Catalano JG; Li W; Giammar DE Environ Sci Technol; 2017 Jun; 51(11):6308-6318. PubMed ID: 28530105 [TBL] [Abstract][Full Text] [Related]
6. The effect of FeS on the fate of Cr(VI) in the presence of organic matters under dynamic anoxic/oxic conditions. Hou J; Li Z; Xia J; Huo Z; Wu J Environ Sci Pollut Res Int; 2023 May; 30(25):67472-67484. PubMed ID: 37115447 [TBL] [Abstract][Full Text] [Related]
7. Investigation of the migration of natural organic matter-iron-antimony nano-colloids in acid mine drainage. Zhang Y; Wu P; Zhu J; Liao P; Niyuhire E; Fan F; Mao W; Dong L; Zheng R; Li Y Sci Total Environ; 2024 Mar; 918():170666. PubMed ID: 38316310 [TBL] [Abstract][Full Text] [Related]
8. Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron. Mak MS; Lo IM Chemosphere; 2011 Jun; 84(2):234-40. PubMed ID: 21530997 [TBL] [Abstract][Full Text] [Related]
9. Transport of arsenic loaded by ferric humate colloid in saturated porous media. Yao Y; Mi N; He C; Yin L; Zhou D; Zhang Y; Sun H; Yang S; Li S; He H Chemosphere; 2020 Feb; 240():124987. PubMed ID: 31726603 [TBL] [Abstract][Full Text] [Related]
10. Reduction process of Cr(VI) by Fe(II) and humic acid analyzed using high time resolution XAFS analysis. Hori M; Shozugawa K; Matsuo M J Hazard Mater; 2015 Mar; 285():140-7. PubMed ID: 25497027 [TBL] [Abstract][Full Text] [Related]
11. Environmental colloid behaviors of humic acid - Cadmium nanoparticles in aquatic environments. Zheng R; Zhu J; Liao P; Wang D; Wu P; Mao W; Zhang Y; Wang W J Environ Sci (China); 2025 Mar; 149():663-675. PubMed ID: 39181676 [TBL] [Abstract][Full Text] [Related]
12. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates. Karimian N; Burton ED; Johnston SG Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811 [TBL] [Abstract][Full Text] [Related]
13. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite. Angelico R; Ceglie A; He JZ; Liu YR; Palumbo G; Colombo C Chemosphere; 2014 Mar; 99():239-47. PubMed ID: 24315181 [TBL] [Abstract][Full Text] [Related]
14. Co-transport of U(VI), humic acid and colloidal gibbsite in water-saturated porous media. Yang J; Ge M; Jin Q; Chen Z; Guo Z Chemosphere; 2019 Sep; 231():405-414. PubMed ID: 31146132 [TBL] [Abstract][Full Text] [Related]
15. Comparing the influence of humic/fulvic acid and tannic acid on Cr(VI) adsorption onto polystyrene microplastics: Evidence for the formation of Cr(OH) Li J; Li X; Ma S; Zhao W; Xie W; Ma J; Yao Y; Wei W Chemosphere; 2022 Nov; 307(Pt 1):135697. PubMed ID: 35843429 [TBL] [Abstract][Full Text] [Related]
16. Negative impact of oxygen molecular activation on Cr(VI) removal with core-shell Fe@Fe2O3 nanowires. Mu Y; Wu H; Ai Z J Hazard Mater; 2015 Nov; 298():1-10. PubMed ID: 25988715 [TBL] [Abstract][Full Text] [Related]
17. Colloid-bound radicals formed in NOM-enhanced Fe(III)/peroxymonosulfate process accelerate the degradation of trace organic contaminants in water. Wang Y; Deng Y; Yao L; Yang X Water Res; 2024 Jan; 248():120880. PubMed ID: 38007886 [TBL] [Abstract][Full Text] [Related]
18. Long-distance mobilization of chromium(III) in soil associated with submicron Cr Zhu L; Hong C; Zhang J; Qiu Y J Hazard Mater; 2023 Mar; 445():130519. PubMed ID: 36493648 [TBL] [Abstract][Full Text] [Related]
19. Complexation and Redox Buffering of Iron(II) by Dissolved Organic Matter. Daugherty EE; Gilbert B; Nico PS; Borch T Environ Sci Technol; 2017 Oct; 51(19):11096-11104. PubMed ID: 28853878 [TBL] [Abstract][Full Text] [Related]
20. Cross-redox and simultaneous removal of Cr(VI) and As(III): Influences of Fe(II), Fe(III), oxalic acid, and dissolved organic carbon. Ng KH; Hsu LC; Liu YT; Hsiao CY; Chiang PN; Teah HY; Hung JT; Tzou YM Ecotoxicol Environ Saf; 2022 Oct; 245():114084. PubMed ID: 36152429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]