These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32163783)

  • 1. The iron records and its sources during 1990-2017 from the Lambert Glacial Basin shallow ice core, East Antarctica.
    Du Z; Xiao C; Mayewski PA; Handley MJ; Li C; Ding M; Liu J; Yang J; Liu K
    Chemosphere; 2020 Jul; 251():126399. PubMed ID: 32163783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron in the NEEM ice core relative to Asian loess records over the last glacial-interglacial cycle.
    Xiao C; Du Z; Handley MJ; Mayewski PA; Cao J; Schüpbach S; Zhang T; Petit JR; Li C; Han Y; Li Y; Ren J
    Natl Sci Rev; 2021 Jul; 8(7):nwaa144. PubMed ID: 34691679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fe variation characteristics and sources in snow samples along a traverse from Zhongshan Station to Dome A, East Antarctica.
    Du Z; Xiao C; Handley MJ; Mayewski PA; Li C; Liu S; Ma X; Yang J
    Sci Total Environ; 2019 Jul; 675():380-389. PubMed ID: 31030144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First discrete iron(II) records from Dome C (Antarctica) and the Holtedahlfonna glacier (Svalbard).
    Burgay F; Barbaro E; Cappelletti D; Turetta C; Gallet JC; Isaksson E; Stenni B; Dreossi G; Scoto F; Barbante C; Spolaor A
    Chemosphere; 2021 Mar; 267():129335. PubMed ID: 33352366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glacial-interglacial changes in the occurrence of Pb, Cd, Cu and Zn in Vostok Antarctic ice from 240 000 to 410 000 years BP.
    Hong S; Boutron CF; Barbante C; Do Hur S; Lee K; Gabrielli P; Capodaglio G; Ferrari CP; Turetta C; Petit JR; Lipenkov VY
    J Environ Monit; 2005 Dec; 7(12):1326-31. PubMed ID: 16307091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans.
    Hawkings JR; Wadham JL; Tranter M; Raiswell R; Benning LG; Statham PJ; Tedstone A; Nienow P; Lee K; Telling J
    Nat Commun; 2014 May; 5():3929. PubMed ID: 24845560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prominent features in isotopic, chemical and dust stratigraphies from coastal East Antarctic ice sheet (Eastern Wilkes Land).
    Caiazzo L; Baccolo G; Barbante C; Becagli S; Bertò M; Ciardini V; Crotti I; Delmonte B; Dreossi G; Frezzotti M; Gabrieli J; Giardi F; Han Y; Hong SB; Hur SD; Hwang H; Kang JH; Narcisi B; Proposito M; Scarchilli C; Selmo E; Severi M; Spolaor A; Stenni B; Traversi R; Udisti R
    Chemosphere; 2017 Jun; 176():273-287. PubMed ID: 28273535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly bioavailable dust-borne iron delivered to the Southern Ocean during glacial periods.
    Shoenfelt EM; Winckler G; Lamy F; Anderson RF; Bostick BC
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11180-11185. PubMed ID: 30322933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into atmospheric deposition and spatial distribution of bioavailable iron in the glaciers of northeastern Tibetan Plateau.
    Di J; Dong Z; Parteli EJR; Wei T; Marcelli A; Ren J; Qin X; Chen S
    Sci Total Environ; 2022 Jun; 825():153946. PubMed ID: 35189209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trace metals in Antarctica related to climate change and increasing human impact.
    Bargagli R
    Rev Environ Contam Toxicol; 2000; 166():129-73. PubMed ID: 10868078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum.
    Conway TM; Hoffmann LJ; Breitbarth E; Strzepek RF; Wolff EW
    PLoS One; 2016; 11(7):e0158553. PubMed ID: 27384948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous flow analysis of labile iron in ice-cores.
    Hiscock WT; Fischer H; Bigler M; Gfeller G; Leuenberger D; Mini O
    Environ Sci Technol; 2013 May; 47(9):4416-25. PubMed ID: 23594184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial Fe(III) reduction as a potential iron source from Holocene sediments beneath Larsen Ice Shelf.
    Jung J; Yoo KC; Rosenheim BE; Conway TM; Lee JI; Yoon HI; Hwang CY; Yang K; Subt C; Kim J
    Nat Commun; 2019 Dec; 10(1):5786. PubMed ID: 31857591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial variability of biogeochemistry in shallow coastal benthic communities of Potter Cove (Antarctica) and the impact of a melting glacier.
    Hoffmann R; Pasotti F; Vázquez S; Lefaible N; Torstensson A; MacCormack W; Wenzhöfer F; Braeckman U
    PLoS One; 2018; 13(12):e0207917. PubMed ID: 30566444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core.
    Lambert F; Delmonte B; Petit JR; Bigler M; Kaufmann PR; Hutterli MA; Stocker TF; Ruth U; Steffensen JP; Maggi V
    Nature; 2008 Apr; 452(7187):616-9. PubMed ID: 18385736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The
    Severi M; Becagli S; Caiazzo L; Nardin R; Toccafondi A; Traversi R
    Chemosphere; 2023 Jul; 329():138674. PubMed ID: 37054845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin and characterisation of microparticles in an ice core from the Central Dronning Maud Land, East Antarctica.
    Laluraj CM; Krishnan KP; Thamban M; Mohan R; Naik SS; D'Souza W; Ravindra R; Chaturvedi A
    Environ Monit Assess; 2009 Feb; 149(1-4):377-83. PubMed ID: 18301999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal variations in the sources of natural and anthropogenic lead deposited at the East Rongbuk Glacier in the high-altitude Himalayas.
    Burn-Nunes L; Vallelonga P; Lee K; Hong S; Burton G; Hou S; Moy A; Edwards R; Loss R; Rosman K
    Sci Total Environ; 2014 Jul; 487():407-19. PubMed ID: 24797737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid rock drainage and rock weathering in Antarctica: important sources for iron cycling in the Southern Ocean.
    Dold B; Gonzalez-Toril E; Aguilera A; Lopez-Pamo E; Cisternas ME; Bucchi F; Amils R
    Environ Sci Technol; 2013 Jun; 47(12):6129-36. PubMed ID: 23682976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials.
    Wilson DJ; Bertram RA; Needham EF; van de Flierdt T; Welsh KJ; McKay RM; Mazumder A; Riesselman CR; Jimenez-Espejo FJ; Escutia C
    Nature; 2018 Sep; 561(7723):383-386. PubMed ID: 30232420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.