These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32163835)

  • 1. Carbonization of corncobs for the preparation of barbecue charcoal and combustion characteristics of corncob char.
    Kluska J; Ochnio M; Kardaś D
    Waste Manag; 2020 Mar; 105():560-565. PubMed ID: 32163835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation on cotton stalk and bamboo sawdust carbonization for barbecue charcoal preparation.
    Xiong S; Zhang S; Wu Q; Guo X; Dong A; Chen C
    Bioresour Technol; 2014; 152():86-92. PubMed ID: 24280085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possible Utilization of Distillery Waste in the Carbonization Process.
    Kluska J
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood.
    Zeng K; Minh DP; Gauthier D; Weiss-Hortala E; Nzihou A; Flamant G
    Bioresour Technol; 2015 Apr; 182():114-119. PubMed ID: 25686544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char.
    Aboulkas A; Hammani H; El Achaby M; Bilal E; Barakat A; El Harfi K
    Bioresour Technol; 2017 Nov; 243():400-408. PubMed ID: 28688323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Char from the co-pyrolysis of Eucalyptus wood and low-density polyethylene for use as high-quality fuel: Influence of process parameters.
    Samal B; Vanapalli KR; Dubey BK; Bhattacharya J; Chandra S; Medha I
    Sci Total Environ; 2021 Nov; 794():148723. PubMed ID: 34217075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolytic characteristics of biomass acid hydrolysis residue rich in lignin.
    Huang Y; Wei Z; Yin X; Wu C
    Bioresour Technol; 2012 Jan; 103(1):470-6. PubMed ID: 22055106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Urban biowaste for solid fuel production: waste suitability assessment and experimental carbonization in Dar es Salaam, Tanzania.
    Lohri CR; Faraji A; Ephata E; Rajabu HM; Zurbrügg C
    Waste Manag Res; 2015 Feb; 33(2):175-82. PubMed ID: 25649406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation.
    Pala M; Kantarli IC; Buyukisik HB; Yanik J
    Bioresour Technol; 2014 Jun; 161():255-62. PubMed ID: 24709539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical and thermochemical characterization of rice husk char as a potential biomass energy source.
    Maiti S; Dey S; Purakayastha S; Ghosh B
    Bioresour Technol; 2006 Nov; 97(16):2065-70. PubMed ID: 16298126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of volatile-char interactions on char during pyrolysis of rice husk at mild temperatures.
    Liu P; Zhao Y; Guo Y; Feng D; Wu J; Wang P; Sun S
    Bioresour Technol; 2016 Nov; 219():702-709. PubMed ID: 27544921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation on oxygen-controlled sewage sludge carbonization with low temperature: from thermal behavior to three-phase product properties.
    Yu F; Hu Y; Li L; Guo Q; Zhu Y; Jiao L; Wang Y; Cui X
    Environ Sci Pollut Res Int; 2022 May; 29(21):31441-31452. PubMed ID: 35006570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and valorization of biomass char: a comparison with biomass ash.
    Trivedi NS; Mandavgane SA; Chaurasia A
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3458-3467. PubMed ID: 29152698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of CaO and hydrothermal carbonization conditions on the fuel characteristics of rice husk hydrochars.
    Liu Y; Wang E; Kan Z; Liu B
    Waste Manag Res; 2022 Dec; 40(12):1777-1784. PubMed ID: 35670383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heating and emission characteristics from combustion of charcoal and co-combustion of charcoal with faecal char-sawdust char briquettes in a ceramic cook stove.
    Otieno AO; Home PG; Raude JM; Murunga SI; Gachanja A
    Heliyon; 2022 Aug; 8(8):e10272. PubMed ID: 36033315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Torrefaction of corncob to produce charcoal under nitrogen and carbon dioxide atmospheres.
    Li SX; Chen CZ; Li MF; Xiao X
    Bioresour Technol; 2018 Feb; 249():348-353. PubMed ID: 29054066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Characterization of Polypropylene Waste from Personal Protective Equipment (PPE)-Derived Char-Filled Sugar Palm Starch Biocomposite Briquettes.
    Harussani MM; Sapuan SM; Rashid U; Khalina A
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural evolution of maize stalk/char particles during pyrolysis.
    Fu P; Hu S; Sun L; Xiang J; Yang T; Zhang A; Zhang J
    Bioresour Technol; 2009 Oct; 100(20):4877-83. PubMed ID: 19481930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of manure feedstock, slow pyrolysis, and hydrothermal temperature on manure thermochemical and combustion properties.
    Zhou S; Liang H; Han L; Huang G; Yang Z
    Waste Manag; 2019 Apr; 88():85-95. PubMed ID: 31079653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis.
    Labbé N; Harper D; Rials T; Elder T
    J Agric Food Chem; 2006 May; 54(10):3492-7. PubMed ID: 19127715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.