These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32163961)

  • 1. Photonic generation of tunable dual-chirp microwave waveforms using a dual-beam optically injected semiconductor laser.
    Zhou P; Chen H; Li N; Zhang R; Pan S
    Opt Lett; 2020 Mar; 45(6):1342-1345. PubMed ID: 32163961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-linear chirp microwave signal generation by using single-beam injection to a DFB semiconductor laser and optical heterodyne technique.
    Jin Y; Lin X; Wu Z; Yue D; Zhang F; Zhang L; Jiang Z; Xia G
    Opt Express; 2022 Jun; 30(12):21698-21709. PubMed ID: 36224883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable triangular frequency modulated microwave waveform generation with improved linearity using an optically injected semiconductor laser.
    Zhang B; Zhu D; Zhou P; Xie C; Pan S
    Appl Opt; 2019 Jul; 58(20):5479-5485. PubMed ID: 31504017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of NLFM microwave waveforms based on controlled period-one dynamics of semiconductor lasers.
    Zhou P; Zhang R; Li K; Jiang Z; Mu P; Bao H; Li N
    Opt Express; 2020 Oct; 28(22):32647-32656. PubMed ID: 33114946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bandwidth-enhanced LFM waveform generator based on dynamic control of an optically injected semiconductor laser.
    Zhou P; Zhu J; Zhang R; Li N
    Opt Lett; 2022 Aug; 47(15):3864-3867. PubMed ID: 35913334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser.
    Zhou P; Zhang F; Guo Q; Pan S
    Opt Express; 2016 Aug; 24(16):18460-7. PubMed ID: 27505809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic generation of a dual-chirp waveform with an optoelectronic oscillator based on stimulated Brillouin scattering.
    Zhou W; Wang D; Du C; Ding Y; Dong W
    Appl Opt; 2021 Nov; 60(32):10120-10123. PubMed ID: 34807118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-modulated continuous-wave generation based on an optically injected semiconductor laser with optical feedback stabilization.
    Lin X; Xia G; Shang Z; Deng T; Tang X; Fan L; Gao Z; Wu Z
    Opt Express; 2019 Jan; 27(2):1217-1225. PubMed ID: 30696191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic approach for generating bandwidth-doubled and switchable multi-format chirp waveforms.
    Yi C; Yang S; Yang B; Jin T; Chi H
    Opt Lett; 2021 Apr; 46(7):1578-1581. PubMed ID: 33793490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic generation of quadruple bandwidth dual-band dual-chirp microwave waveforms with immunity to power fading.
    Fan X; Zhu S; Du J; Li M; Zhu NH; Li W
    Opt Lett; 2021 Feb; 46(4):868-871. PubMed ID: 33577534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonic generation of terahertz dual-chirp waveforms ranging from 364 to 392 GHz.
    Wang S; Zhang L; Lu Z; Zhang H; Qiao M; Idrees N; Saqlain M; Zheng S; Jin X; Zhang X; Yu X
    Opt Express; 2021 Jun; 29(13):19240-19246. PubMed ID: 34266037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic approach for the generation of switchable down-, up-, and dual-chirped linear frequency-modulated microwave signals.
    Li P; Yan L; Ye J; Zou X; Luo B; Pan W
    Opt Lett; 2020 Apr; 45(7):1990-1993. PubMed ID: 32236050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-chirp Fourier domain mode-locked optoelectronic oscillator.
    Hao T; Tang J; Shi N; Li W; Zhu N; Li M
    Opt Lett; 2019 Apr; 44(8):1912-1915. PubMed ID: 30985773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic microwave time delay using slow- and fast-light effects in optically injected semiconductor lasers.
    Hsieh KL; Hwang SK; Yang CL
    Opt Lett; 2017 Sep; 42(17):3307-3310. PubMed ID: 28957090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic generation of a parabolic-shaped microwave signal and dual-linear-chirp microwave waveform.
    Kumar R; Raghuwanshi SK
    Appl Opt; 2020 Jul; 59(20):6024-6029. PubMed ID: 32672745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency tunable optoelectronic oscillator based on a directly modulated DFB semiconductor laser under optical injection.
    Wang P; Xiong J; Zhang T; Chen D; Xiang P; Zheng J; Zhang Y; Li R; Huang L; Pu T; Chen X
    Opt Express; 2015 Aug; 23(16):20450-8. PubMed ID: 26367899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic generation of linearly chirped microwave waveforms using a monolithic integrated three-section laser.
    Li J; Pu T; Zheng J; Zhang Y; Shi Y; Zhu H; Li Y; Zhang X; Zhao G; Zhou Y; Chen X
    Opt Express; 2018 Apr; 26(8):9676-9685. PubMed ID: 29715916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization.
    Zhuang JP; Chan SC
    Opt Lett; 2013 Feb; 38(3):344-6. PubMed ID: 23381432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser.
    Juan YS; Lin FY
    Opt Express; 2009 Oct; 17(21):18596-605. PubMed ID: 20372590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical investigation of photonic microwave generation in an optically injected semiconductor laser subject to filtered optical feedback.
    Xue C; Ji S; Hong Y; Jiang N; Li H; Qiu K
    Opt Express; 2019 Feb; 27(4):5065-5082. PubMed ID: 30876111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.