These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32163966)

  • 1. Inverse design of plasmonic metasurfaces by convolutional neural network.
    Lin R; Zhai Y; Xiong C; Li X
    Opt Lett; 2020 Mar; 45(6):1362-1365. PubMed ID: 32163966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural networks enabled forward and inverse design of reconfigurable metasurfaces.
    Tanriover I; Hadibrata W; Scheuer J; Aydin K
    Opt Express; 2021 Aug; 29(17):27219-27227. PubMed ID: 34615142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instantaneous Property Prediction and Inverse Design of Plasmonic Nanostructures Using Machine Learning: Current Applications and Future Directions.
    Xu X; Aggarwal D; Shankar K
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A unique physics-inspired deep-learning-based platform introducing a generalized tool for rapid optical-response prediction and parametric-optimization for all-dielectric metasurfaces.
    Noureen S; Mehmood MQ; Ali M; Rehman B; Zubair M; Massoud Y
    Nanoscale; 2022 Nov; 14(44):16436-16449. PubMed ID: 36326120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential convolutional neural network.
    Sarıgül M; Ozyildirim BM; Avci M
    Neural Netw; 2019 Aug; 116():279-287. PubMed ID: 31125914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science.
    Mocanu DC; Mocanu E; Stone P; Nguyen PH; Gibescu M; Liotta A
    Nat Commun; 2018 Jun; 9(1):2383. PubMed ID: 29921910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid deep-learning-assisted design method for 2-bit coding metasurfaces.
    Fu J; Zhang Y; Dou Z; Yang Z; Liu M; Zhang H
    Appl Opt; 2023 May; 62(13):3502-3511. PubMed ID: 37132852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent design of the chiral metasurfaces for flexible targets: combining a deep neural network with a policy proximal optimization algorithm.
    Liao X; Gui L; Gao A; Yu Z; Xu K
    Opt Express; 2022 Oct; 30(22):39582-39596. PubMed ID: 36298906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading.
    Li S; Jiang H; Pang W
    Comput Biol Med; 2017 May; 84():156-167. PubMed ID: 28365546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical frontend for a convolutional neural network.
    Colburn S; Chu Y; Shilzerman E; Majumdar A
    Appl Opt; 2019 Apr; 58(12):3179-3186. PubMed ID: 31044792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images.
    Cheng PM; Malhi HS
    J Digit Imaging; 2017 Apr; 30(2):234-243. PubMed ID: 27896451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks.
    Sajedian I; Kim J; Rho J
    Microsyst Nanoeng; 2019; 5():27. PubMed ID: 31240107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient inverse design and spectrum prediction for nanophotonic devices based on deep recurrent neural networks.
    Yan R; Wang T; Jiang X; Huang X; Wang L; Yue X; Wang H; Wang Y
    Nanotechnology; 2021 May; 32(33):. PubMed ID: 33971632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images.
    Emami A; Kunii N; Matsuo T; Shinozaki T; Kawai K; Takahashi H
    Neuroimage Clin; 2019; 22():101684. PubMed ID: 30711680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of strong coupling in resonant perovskite metasurfaces by deep learning.
    Fan L; Yu Y; Gao C; Qu X; Zhou C
    Opt Lett; 2024 Aug; 49(15):4318-4321. PubMed ID: 39090923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Ensemble Convolutional Neural Networks for Bearing Fault Diagnosis Using Multi-Sensor Data.
    Liu Y; Yan X; Zhang CA; Liu W
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31810161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse design of metasurfaces with customized transmission characteristics of frequency band based on generative adversarial networks.
    Wang HP; Cao DM; Pang XY; Zhang XH; Wang SY; Hou WY; Nie CC; Li YB
    Opt Express; 2023 Nov; 31(23):37763-37777. PubMed ID: 38017899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of convolutional neural networks for visual recognition.
    Nebauer C
    IEEE Trans Neural Netw; 1998; 9(4):685-96. PubMed ID: 18252491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.