These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32164221)

  • 1. On-Chip Inverted Emulsion Method for Fast Giant Vesicle Production, Handling, and Analysis.
    Yandrapalli N; Seemann T; Robinson T
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32164221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of the Inverted Emulsion Method for High-Yield Production of Biomimetic Giant Unilamellar Vesicles.
    Moga A; Yandrapalli N; Dimova R; Robinson T
    Chembiochem; 2019 Oct; 20(20):2674-2682. PubMed ID: 31529570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models.
    Tivony R; Fletcher M; Al Nahas K; Keyser UF
    ACS Synth Biol; 2021 Nov; 10(11):3105-3116. PubMed ID: 34761904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size control of giant unilamellar vesicles prepared from inverted emulsion droplets.
    Nishimura K; Suzuki H; Toyota T; Yomo T
    J Colloid Interface Sci; 2012 Jun; 376(1):119-25. PubMed ID: 22444482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-permeable vesicles produced by microfluidics to tune the phase behaviour of encapsulated macromolecules.
    Cochereau R; Renard D; Noûs C; Boire A
    J Colloid Interface Sci; 2020 Nov; 580():709-719. PubMed ID: 32712477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip generation of monodisperse giant unilamellar lipid vesicles containing quantum dots.
    Park YH; Lee DH; Um E; Park JK
    Electrophoresis; 2016 May; 37(10):1353-8. PubMed ID: 26920999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-high capacity microfluidic trapping of giant vesicles for high-throughput membrane studies.
    Yandrapalli N; Robinson T
    Lab Chip; 2019 Feb; 19(4):626-633. PubMed ID: 30632596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DisGUVery: A Versatile Open-Source Software for High-Throughput Image Analysis of Giant Unilamellar Vesicles.
    van Buren L; Koenderink GH; Martinez-Torres C
    ACS Synth Biol; 2023 Jan; 12(1):120-135. PubMed ID: 36508359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Pot Assembly of Complex Giant Unilamellar Vesicle-Based Synthetic Cells.
    Göpfrich K; Haller B; Staufer O; Dreher Y; Mersdorf U; Platzman I; Spatz JP
    ACS Synth Biol; 2019 May; 8(5):937-947. PubMed ID: 31042361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane permeability to water measured by microfluidic trapping of giant vesicles.
    Bhatia T; Robinson T; Dimova R
    Soft Matter; 2020 Aug; 16(31):7359-7369. PubMed ID: 32696791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized cDICE for Efficient Reconstitution of Biological Systems in Giant Unilamellar Vesicles.
    Van de Cauter L; Fanalista F; van Buren L; De Franceschi N; Godino E; Bouw S; Danelon C; Dekker C; Koenderink GH; Ganzinger KA
    ACS Synth Biol; 2021 Jul; 10(7):1690-1702. PubMed ID: 34185516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of Giant Unilamellar Vesicles Assisted by Fluorinated Nanoparticles.
    Waeterschoot J; Gosselé W; Alizadeh Zeinabad H; Lammertyn J; Koos E; Casadevall I Solvas X
    Adv Sci (Weinh); 2023 Dec; 10(34):e2302461. PubMed ID: 37807811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation.
    Arriaga LR; Datta SS; Kim SH; Amstad E; Kodger TE; Monroy F; Weitz DA
    Small; 2014 Mar; 10(5):950-6. PubMed ID: 24150883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Basicles": Microbial Growth and Production Monitoring in Giant Lipid Vesicles.
    Jusková P; Schmid YRF; Stucki A; Schmitt S; Held M; Dittrich PS
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):34698-34706. PubMed ID: 31454223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FtsZ Reorganization Facilitates Deformation of Giant Vesicles in Microfluidic Traps*.
    Ganzinger KA; Merino-Salomón A; García-Soriano DA; Butterfield AN; Litschel T; Siedler F; Schwille P
    Angew Chem Int Ed Engl; 2020 Nov; 59(48):21372-21376. PubMed ID: 32735732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in giant unilamellar vesicle preparation techniques and applications.
    Nair KS; Bajaj H
    Adv Colloid Interface Sci; 2023 Aug; 318():102935. PubMed ID: 37320960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sizing of giant unilamellar vesicles using a metal mesh with a high opening ratio.
    Shinohara K; Okita T; Tsugane M; Kondo T; Suzuki H
    Chem Phys Lipids; 2021 Nov; 241():105148. PubMed ID: 34600914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalized Vesicles by Microfluidic Device.
    Vallejo D; Lee SH; Lee A
    Methods Mol Biol; 2017; 1572():489-510. PubMed ID: 28299707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of giant unilamellar vesicles by the water-in-oil emulsion-transfer method without high internal concentrations of sugars.
    Tsuji G; Sunami T; Ichihashi N
    J Biosci Bioeng; 2018 Oct; 126(4):540-545. PubMed ID: 29793863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesizing artificial cells from giant unilamellar vesicles: state-of-the art in the development of microfluidic technology.
    Matosevic S
    Bioessays; 2012 Nov; 34(11):992-1001. PubMed ID: 22926929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.