These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32164221)

  • 21. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental platform for the functional investigation of membrane proteins in giant unilamellar vesicles.
    Dolder N; Müller P; von Ballmoos C
    Soft Matter; 2022 Aug; 18(31):5877-5893. PubMed ID: 35916307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic production and characterization of biofunctionalized giant unilamellar vesicles for targeted intracellular cargo delivery.
    Staufer O; Antona S; Zhang D; Csatári J; Schröter M; Janiesch JW; Fabritz S; Berger I; Platzman I; Spatz JP
    Biomaterials; 2021 Jan; 264():120203. PubMed ID: 32987317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unilamellar vesicle formation and encapsulation by microfluidic jetting.
    Stachowiak JC; Richmond DL; Li TH; Liu AP; Parekh SH; Fletcher DA
    Proc Natl Acad Sci U S A; 2008 Mar; 105(12):4697-702. PubMed ID: 18353990
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic production, stability and loading of synthetic giant unilamellar vesicles.
    Ernits M; Reinsalu O; Yandrapalli N; Kopanchuk S; Moradpur-Tari E; Sanka I; Scheler O; Rinken A; Kurg R; Kyritsakis A; Linko V; Zadin V
    Sci Rep; 2024 Jun; 14(1):14071. PubMed ID: 38890456
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems.
    Haller B; Göpfrich K; Schröter M; Janiesch JW; Platzman I; Spatz JP
    Lab Chip; 2018 Aug; 18(17):2665-2674. PubMed ID: 30070293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic trapping of giant unilamellar vesicles to study transport through a membrane pore.
    Robinson T; Kuhn P; Eyer K; Dittrich PS
    Biomicrofluidics; 2013; 7(4):44105. PubMed ID: 24404039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of giant unilamellar vesicles and encapsulation of lyotropic nematic liquid crystals.
    Bao P; Paterson DA; Peyman SA; Jones JC; Sandoe JAT; Gleeson HF; Evans SD; Bushby RJ
    Soft Matter; 2021 Mar; 17(8):2234-2241. PubMed ID: 33469638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic Giant Polymer Vesicles Equipped with Biopores for High-Throughput Screening of Bacteria.
    Heuberger L; Messmer D; Dos Santos EC; Scherrer D; Lörtscher E; Schoenenberger CA; Palivan CG
    Adv Sci (Weinh); 2024 Mar; 11(11):e2307103. PubMed ID: 38158637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surfactant-free production of biomimetic giant unilamellar vesicles using PDMS-based microfluidics.
    Yandrapalli N; Petit J; Bäumchen O; Robinson T
    Commun Chem; 2021 Jun; 4(1):100. PubMed ID: 36697530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid bilayer vesicle generation using microfluidic jetting.
    Coyne CW; Patel K; Heureaux J; Stachowiak J; Fletcher DA; Liu AP
    J Vis Exp; 2014 Feb; (84):e51510. PubMed ID: 24637415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of lipid composition and diffusivity in OLA generated vesicles.
    Schaich M; Sobota D; Sleath H; Cama J; Keyser UF
    Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183359. PubMed ID: 32416194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring Giant Unilamellar Vesicle Production for Artificial Cells - Current Challenges and Future Directions.
    Van de Cauter L; van Buren L; Koenderink GH; Ganzinger KA
    Small Methods; 2023 Dec; 7(12):e2300416. PubMed ID: 37464561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trapping and release of giant unilamellar vesicles in microfluidic wells.
    Yamada A; Lee S; Bassereau P; Baroud CN
    Soft Matter; 2014 Aug; 10(32):5878-85. PubMed ID: 24930637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liposome-based liquid handling platform featuring addition, mixing, and aliquoting of femtoliter volumes.
    Shiomi H; Tsuda S; Suzuki H; Yomo T
    PLoS One; 2014; 9(7):e101820. PubMed ID: 24991878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A method of gentle hydration to prepare oil-free giant unilamellar vesicles that can confine enzymatic reactions.
    Shohda K; Takahashi K; Suyama A
    Biochem Biophys Rep; 2015 Sep; 3():76-82. PubMed ID: 29124169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observations of Membrane Domain Reorganization in Mechanically Compressed Artificial Cells.
    Robinson T; Dittrich PS
    Chembiochem; 2019 Oct; 20(20):2666-2673. PubMed ID: 31087814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of Isolated Giant Unilamellar Vesicles under High Salt Concentrations.
    Stein H; Spindler S; Bonakdar N; Wang C; Sandoghdar V
    Front Physiol; 2017; 8():63. PubMed ID: 28243205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device.
    Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S
    Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrodynamic filtration in microfluidic channels as size-selection process for giant unilamellar vesicles.
    Woo Y; Heo Y; Shin K; Yi GR
    J Biomed Nanotechnol; 2013 Apr; 9(4):610-4. PubMed ID: 23621019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.