These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32164221)

  • 41. Detection of U-87 Tumor Cells by RGD-Functionalized/Gd-Containing Giant Unilamellar Vesicles in Magnetization Transfer Contrast Magnetic Resonance Images.
    Ferrauto G; Tripepi M; Di Gregorio E; Bitonto V; Aime S; Delli Castelli D
    Invest Radiol; 2021 May; 56(5):301-312. PubMed ID: 33273375
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Encapsulation of Nucleic Acids into Giant Unilamellar Vesicles by Freeze-Thaw: a Way Protocells May Form.
    Qiao H; Hu N; Bai J; Ren L; Liu Q; Fang L; Wang Z
    Orig Life Evol Biosph; 2017 Dec; 47(4):499-510. PubMed ID: 27807660
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Giant unilamellar vesicles - a perfect tool to visualize phase separation and lipid rafts in model systems.
    Wesołowska O; Michalak K; Maniewska J; Hendrich AB
    Acta Biochim Pol; 2009; 56(1):33-9. PubMed ID: 19287805
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of Sugars on Giant Unilamellar Vesicle Preparation, Fusion, PCR in Liposomes, and Pore Formation.
    Kajii K; Shimomura A; T Higashide M; Oki M; Tsuji G
    Langmuir; 2022 Jul; 38(29):8871-8880. PubMed ID: 35836326
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Division and Regrowth of Phase-Separated Giant Unilamellar Vesicles*.
    Dreher Y; Jahnke K; Bobkova E; Spatz JP; Göpfrich K
    Angew Chem Int Ed Engl; 2021 May; 60(19):10661-10669. PubMed ID: 33355974
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On-chip microfluidic production of cell-sized liposomes.
    Deshpande S; Dekker C
    Nat Protoc; 2018 May; 13(5):856-874. PubMed ID: 29599442
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combinatorial Strategy for Studying Biochemical Pathways in Double Emulsion Templated Cell-Sized Compartments.
    Dos Santos EC; Belluati A; Necula D; Scherrer D; Meyer CE; Wehr RP; Lörtscher E; Palivan CG; Meier W
    Adv Mater; 2020 Dec; 32(48):e2004804. PubMed ID: 33107187
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reconstitution of an RNA Virus Replicase in Artificial Giant Unilamellar Vesicles Supports Full Replication and Provides Protection for the Double-Stranded RNA Replication Intermediate.
    Kovalev N; Pogany J; Nagy PD
    J Virol; 2020 Aug; 94(18):. PubMed ID: 32641477
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electroformation of Giant Unilamellar Vesicles from Damp Lipid Films Formed by Vesicle Fusion.
    Boban Z; Mardešić I; Jozić SP; Šumanovac J; Subczynski WK; Raguz M
    Membranes (Basel); 2023 Mar; 13(3):. PubMed ID: 36984739
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Antimicrobial peptide magainin 2-induced rupture of single giant unilamellar vesicles comprising E. coli polar lipids.
    Billah MM; Or Rashid MM; Ahmed M; Yamazaki M
    Biochim Biophys Acta Biomembr; 2023 Mar; 1865(3):184112. PubMed ID: 36567034
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A membrane filtering method for the purification of giant unilamellar vesicles.
    Tamba Y; Terashima H; Yamazaki M
    Chem Phys Lipids; 2011 Jul; 164(5):351-8. PubMed ID: 21524642
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Membrane Shape Dynamics-Based Analysis of the Physical Properties of Giant Unilamellar Vesicles Prepared by Inverted Emulsion and Hydration Techniques.
    Morita M; Noda N
    Langmuir; 2021 Feb; 37(7):2268-2275. PubMed ID: 33555886
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Measuring Encapsulation Efficiency in Cell-Mimicking Giant Unilamellar Vesicles.
    Supramaniam P; Wang Z; Chatzimichail S; Parperis C; Kumar A; Ho V; Ces O; Salehi-Reyhani A
    ACS Synth Biol; 2023 Apr; 12(4):1227-1238. PubMed ID: 36977193
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Control of Enzyme Reaction Initiation inside Giant Unilamellar Vesicles by the Cell-Penetrating Peptide-Mediated Translocation of Cargo Proteins.
    Miwa A; Kamiya K
    ACS Synth Biol; 2022 Nov; 11(11):3836-3846. PubMed ID: 36197293
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antimicrobial Peptide Lactoferricin B-Induced Rapid Leakage of Internal Contents from Single Giant Unilamellar Vesicles.
    Moniruzzaman M; Alam JM; Dohra H; Yamazaki M
    Biochemistry; 2015 Sep; 54(38):5802-14. PubMed ID: 26368853
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Light-Triggered Cargo Loading and Division of DNA-Containing Giant Unilamellar Lipid Vesicles.
    Dreher Y; Jahnke K; Schröter M; Göpfrich K
    Nano Lett; 2021 Jul; 21(14):5952-5957. PubMed ID: 34251204
    [TBL] [Abstract][Full Text] [Related]  

  • 57. pH-Triggered Assembly of Endomembrane Multicompartments in Synthetic Cells.
    Lussier F; Schröter M; Diercks NJ; Jahnke K; Weber C; Frey C; Platzman I; Spatz JP
    ACS Synth Biol; 2022 Jan; 11(1):366-382. PubMed ID: 34889607
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Block Copolymer Giant Unilamellar Vesicles for High-Throughput Screening.
    Heuberger L; Palivan C
    Chimia (Aarau); 2022 Apr; 76(4):350-353. PubMed ID: 38069778
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Visualization and quantification of transmembrane ion transport into giant unilamellar vesicles.
    Valkenier H; López Mora N; Kros A; Davis AP
    Angew Chem Int Ed Engl; 2015 Feb; 54(7):2137-41. PubMed ID: 25556546
    [TBL] [Abstract][Full Text] [Related]  

  • 60. From LUVs to GUVs─How to Cover Micrometer-Sized Pores with Membranes.
    Kramer K; Sari M; Schulze K; Flegel H; Stehr M; Mey I; Janshoff A; Steinem C
    J Phys Chem B; 2022 Oct; 126(41):8233-8244. PubMed ID: 36210780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.