These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32164235)

  • 1. Motion Assessment for Accelerometric and Heart Rate Cycling Data Analysis.
    Charvátová H; Procházka A; Vyšata O
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning for Accelerometric Data Assessment and Ataxic Gait Monitoring.
    Prochazka A; Dostal O; Cejnar P; Mohamed HI; Pavelek Z; Valis M; Vysata O
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():360-367. PubMed ID: 33434133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Face Masks on Physiological Data and the Classification of Rehabilitation Walking.
    Prochazka A; Charvatova H; Vysata O
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2467-2473. PubMed ID: 36001515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity Classification Using Mobile Phone based Motion Sensing and Distributed Computing.
    Artetxe A; Beristain A; Kabongo L
    Stud Health Technol Inform; 2014; 207():1-10. PubMed ID: 25488205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning in Rehabilitation Assessment for Thermal and Heart Rate Data Processing.
    Prochazka A; Charvatova H; Vaseghi S; Vysata O
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1209-1214. PubMed ID: 29877845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feature selection for elderly faller classification based on wearable sensors.
    Howcroft J; Kofman J; Lemaire ED
    J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerometer and Camera-Based Strategy for Improved Human Fall Detection.
    Zerrouki N; Harrou F; Sun Y; Houacine A
    J Med Syst; 2016 Dec; 40(12):284. PubMed ID: 27796842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting falls with wearable sensors using machine learning techniques.
    Özdemir AT; Barshan B
    Sensors (Basel); 2014 Jun; 14(6):10691-708. PubMed ID: 24945676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single vs. multi-sensor approach to enhanced detection of smartphone placement.
    Guiry JJ; Karr CJ; van de Ven P; Nelson J; Begale M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3691-4. PubMed ID: 25570792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Objective and automatic classification of Parkinson disease with Leap Motion controller.
    Butt AH; Rovini E; Dolciotti C; De Petris G; Bongioanni P; Carboncini MC; Cavallo F
    Biomed Eng Online; 2018 Nov; 17(1):168. PubMed ID: 30419916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal-piloted processing and machine learning based efficient power quality disturbances recognition.
    Mian Qaisar S
    PLoS One; 2021; 16(5):e0252104. PubMed ID: 34048442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SUPAR: Smartphone as a ubiquitous physical activity recognizer for u-healthcare services.
    Fahim M; Lee S; Yoon Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3666-9. PubMed ID: 25570786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning algorithms can classify outdoor terrain types during running using accelerometry data.
    Dixon PC; Schütte KH; Vanwanseele B; Jacobs JV; Dennerlein JT; Schiffman JM; Fournier PA; Hu B
    Gait Posture; 2019 Oct; 74():176-181. PubMed ID: 31539798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity recognition with smartphone support.
    Guiry JJ; van de Ven P; Nelson J; Warmerdam L; Riper H
    Med Eng Phys; 2014 Jun; 36(6):670-5. PubMed ID: 24641812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classifier Personalization for Activity Recognition Using Wrist Accelerometers.
    Mannini A; Intille SS
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1585-1594. PubMed ID: 30222588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free-living Evaluation of Laboratory-based Activity Classifiers in Preschoolers.
    Ahmadi MN; Brookes D; Chowdhury A; Pavey T; Trost SG
    Med Sci Sports Exerc; 2020 May; 52(5):1227-1234. PubMed ID: 31764460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Parkinson's disease recognition based on statistical pooling method using acoustic features.
    Yaman O; Ertam F; Tuncer T
    Med Hypotheses; 2020 Feb; 135():109483. PubMed ID: 31954340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated classification of neurological disorders of gait using spatio-temporal gait parameters.
    Pradhan C; Wuehr M; Akrami F; Neuhaeusser M; Huth S; Brandt T; Jahn K; Schniepp R
    J Electromyogr Kinesiol; 2015 Apr; 25(2):413-22. PubMed ID: 25725811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusion of smartphone motion sensors for physical activity recognition.
    Shoaib M; Bosch S; Incel OD; Scholten H; Havinga PJ
    Sensors (Basel); 2014 Jun; 14(6):10146-76. PubMed ID: 24919015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines.
    Li F; Zhao C; Xia Z; Wang Y; Zhou X; Li GZ
    BMC Complement Altern Med; 2012 Aug; 12():127. PubMed ID: 22898352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.