BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 32164554)

  • 41. MaxHiC: A robust background correction model to identify biologically relevant chromatin interactions in Hi-C and capture Hi-C experiments.
    Alinejad-Rokny H; Ghavami Modegh R; Rabiee HR; Ramezani Sarbandi E; Rezaie N; Tam KT; Forrest ARR
    PLoS Comput Biol; 2022 Jun; 18(6):e1010241. PubMed ID: 35749574
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computational Processing and Quality Control of Hi-C, Capture Hi-C and Capture-C Data.
    Hansen P; Gargano M; Hecht J; Ibn-Salem J; Karlebach G; Roehr JT; Robinson PN
    Genes (Basel); 2019 Jul; 10(7):. PubMed ID: 31323892
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chrom-Lasso: a lasso regression-based model to detect functional interactions using Hi-C data.
    Lu J; Wang X; Sun K; Lan X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34013331
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In silico prediction of high-resolution Hi-C interaction matrices.
    Zhang S; Chasman D; Knaack S; Roy S
    Nat Commun; 2019 Dec; 10(1):5449. PubMed ID: 31811132
    [TBL] [Abstract][Full Text] [Related]  

  • 45. HiC1Dmetrics: framework to extract various one-dimensional features from chromosome structure data.
    Wang J; Nakato R
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34850813
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Orchestrating chromosome conformation capture analysis with Bioconductor.
    Serizay J; Matthey-Doret C; Bignaud A; Baudry L; Koszul R
    Nat Commun; 2024 Feb; 15(1):1072. PubMed ID: 38316789
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Network-based method for regions with statistically frequent interchromosomal interactions at single-cell resolution.
    Bulathsinghalage C; Liu L
    BMC Bioinformatics; 2020 Sep; 21(Suppl 14):369. PubMed ID: 32998686
    [TBL] [Abstract][Full Text] [Related]  

  • 48. cLoops2: a full-stack comprehensive analytical tool for chromatin interactions.
    Cao Y; Liu S; Ren G; Tang Q; Zhao K
    Nucleic Acids Res; 2022 Jan; 50(1):57-71. PubMed ID: 34928392
    [TBL] [Abstract][Full Text] [Related]  

  • 49. HiBrowser: an interactive and dynamic browser for synchronous Hi-C data visualization.
    Li P; Liu H; Sun J; Lu J; Liu J
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37544661
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancing Hi-C contact matrices for loop detection with Capricorn: a multiview diffusion model.
    Fang T; Liu Y; Woicik A; Lu M; Jha A; Wang X; Li G; Hristov B; Liu Z; Xu H; Noble WS; Wang S
    Bioinformatics; 2024 Jun; 40(Supplement_1):i471-i480. PubMed ID: 38940142
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NuChart: an R package to study gene spatial neighbourhoods with multi-omics annotations.
    Merelli I; Liò P; Milanesi L
    PLoS One; 2013; 8(9):e75146. PubMed ID: 24069388
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multifaceted Hi-C benchmarking: what makes a difference in chromosome-scale genome scaffolding?
    Kadota M; Nishimura O; Miura H; Tanaka K; Hiratani I; Kuraku S
    Gigascience; 2020 Jan; 9(1):. PubMed ID: 31919520
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts.
    Paulsen J; Sekelja M; Oldenburg AR; Barateau A; Briand N; Delbarre E; Shah A; Sørensen AL; Vigouroux C; Buendia B; Collas P
    Genome Biol; 2017 Jan; 18(1):21. PubMed ID: 28137286
    [TBL] [Abstract][Full Text] [Related]  

  • 54. GenomeFlow: a comprehensive graphical tool for modeling and analyzing 3D genome structure.
    Trieu T; Oluwadare O; Wopata J; Cheng J
    Bioinformatics; 2019 Apr; 35(8):1416-1418. PubMed ID: 30215673
    [TBL] [Abstract][Full Text] [Related]  

  • 55. SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data.
    Yu M; Abnousi A; Zhang Y; Li G; Lee L; Chen Z; Fang R; Lagler TM; Yang Y; Wen J; Sun Q; Li Y; Ren B; Hu M
    Nat Methods; 2021 Sep; 18(9):1056-1059. PubMed ID: 34446921
    [TBL] [Abstract][Full Text] [Related]  

  • 56. HiC-GNN: A generalizable model for 3D chromosome reconstruction using graph convolutional neural networks.
    Hovenga V; Kalita J; Oluwadare O
    Comput Struct Biotechnol J; 2023; 21():812-836. PubMed ID: 36698967
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Binless normalization of Hi-C data provides significant interaction and difference detection independent of resolution.
    Spill YG; Castillo D; Vidal E; Marti-Renom MA
    Nat Commun; 2019 Apr; 10(1):1938. PubMed ID: 31028255
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2.
    Kaul A; Bhattacharyya S; Ay F
    Nat Protoc; 2020 Mar; 15(3):991-1012. PubMed ID: 31980751
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data.
    Carty M; Zamparo L; Sahin M; González A; Pelossof R; Elemento O; Leslie CS
    Nat Commun; 2017 May; 8():15454. PubMed ID: 28513628
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inferring 3D chromatin structure using a multiscale approach based on quaternions.
    Caudai C; Salerno E; Zoppè M; Tonazzini A
    BMC Bioinformatics; 2015 Jul; 16():234. PubMed ID: 26220581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.