BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 32164852)

  • 1. Brain-computer interfaces and virtual reality for neurorehabilitation.
    Leeb R; Pérez-Marcos D
    Handb Clin Neurol; 2020; 168():183-197. PubMed ID: 32164852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies.
    Tieri G; Morone G; Paolucci S; Iosa M
    Expert Rev Med Devices; 2018 Feb; 15(2):107-117. PubMed ID: 29313388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embodiment Is Related to Better Performance on a Brain-Computer Interface in Immersive Virtual Reality: A Pilot Study.
    Juliano JM; Spicer RP; Vourvopoulos A; Lefebvre S; Jann K; Ard T; Santarnecchi E; Krum DM; Liew SL
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naturalistic visualization of reaching movements using head-mounted displays improves movement quality compared to conventional computer screens and proves high usability.
    Wenk N; Buetler KA; Penalver-Andres J; Müri RM; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Dec; 19(1):137. PubMed ID: 36494668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual reality gaming as a neurorehabilitation tool for brain injuries in adults: A systematic review.
    Aulisio MC; Han DY; Glueck AC
    Brain Inj; 2020 Aug; 34(10):1322-1330. PubMed ID: 32791020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Visual Stimuli for Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces in Virtual Reality Environment in terms of Classification Accuracy and Visual Comfort.
    Choi KM; Park S; Im CH
    Comput Intell Neurosci; 2019; 2019():9680697. PubMed ID: 31354804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer of motor skill between virtual reality viewed using a head-mounted display and conventional screen environments.
    Juliano JM; Liew SL
    J Neuroeng Rehabil; 2020 Apr; 17(1):48. PubMed ID: 32276664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Virtual Reality Muscle-Computer Interface for Neurorehabilitation in Chronic Stroke: A Pilot Study.
    Marin-Pardo O; Laine CM; Rennie M; Ito KL; Finley J; Liew SL
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly immersive virtual reality laparoscopy simulation: development and future aspects.
    Huber T; Wunderling T; Paschold M; Lang H; Kneist W; Hansen C
    Int J Comput Assist Radiol Surg; 2018 Feb; 13(2):281-290. PubMed ID: 29151194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immersive virtual reality health games: a narrative review of game design.
    Tao G; Garrett B; Taverner T; Cordingley E; Sun C
    J Neuroeng Rehabil; 2021 Feb; 18(1):31. PubMed ID: 33573684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoring movement representation and alleviating phantom limb pain through short-term neurorehabilitation with a virtual reality system.
    Osumi M; Ichinose A; Sumitani M; Wake N; Sano Y; Yozu A; Kumagaya S; Kuniyoshi Y; Morioka S
    Eur J Pain; 2017 Jan; 21(1):140-147. PubMed ID: 27378656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual reality experiences, embodiment, videogames and their dimensions in neurorehabilitation.
    Perez-Marcos D
    J Neuroeng Rehabil; 2018 Nov; 15(1):113. PubMed ID: 30477527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hiding Assistive Robots During Training in Immersive VR Does Not Affect Users' Motivation, Presence, Embodiment, Performance, Nor Visual Attention.
    Wenk N; Jordi MV; Buetler KA; Marchal-Crespo L
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():390-399. PubMed ID: 35085087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Current Research of Combining Multi-Modal Brain-Computer Interfaces With Virtual Reality.
    Wen D; Liang B; Zhou Y; Chen H; Jung TP
    IEEE J Biomed Health Inform; 2021 Sep; 25(9):3278-3287. PubMed ID: 33373308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. P300 Brain-Computer Interface-Based Drone Control in Virtual and Augmented Reality.
    Kim S; Lee S; Kang H; Kim S; Ahn M
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors Affecting Enjoyment of Virtual Reality Games: A Comparison Involving Consumer-Grade Virtual Reality Technology.
    Shafer DM; Carbonara CP; Korpi MF
    Games Health J; 2019 Feb; 8(1):15-23. PubMed ID: 30199273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of auditory background noise and virtual reality technology on video game distraction analgesia.
    Zeroth JA; Dahlquist LM; Foxen-Craft EC
    Scand J Pain; 2019 Jan; 19(1):207-217. PubMed ID: 30422807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual reality in neurorehabilitation: a review of its effects on multiple cognitive domains.
    Riva G; Mancuso V; Cavedoni S; Stramba-Badiale C
    Expert Rev Med Devices; 2020 Oct; 17(10):1035-1061. PubMed ID: 32962433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring brain potentials to guide neurorehabilitation of tracking impairments.
    Yazmir B; Reiner M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():983-988. PubMed ID: 28813949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Landmarks: A solution for spatial navigation and memory experiments in virtual reality.
    Starrett MJ; McAvan AS; Huffman DJ; Stokes JD; Kyle CT; Smuda DN; Kolarik BS; Laczko J; Ekstrom AD
    Behav Res Methods; 2021 Jun; 53(3):1046-1059. PubMed ID: 32939682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.