These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 32165193)
1. Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell- and tissue-regulatory responses. Patel KD; Kim TH; Mandakhbayar N; Singh RK; Jang JH; Lee JH; Kim HW Acta Biomater; 2020 May; 108():97-110. PubMed ID: 32165193 [TBL] [Abstract][Full Text] [Related]
2. Synergetic Cues of Bioactive Nanoparticles and Nanofibrous Structure in Bone Scaffolds to Stimulate Osteogenesis and Angiogenesis. Kim JJ; El-Fiqi A; Kim HW ACS Appl Mater Interfaces; 2017 Jan; 9(3):2059-2073. PubMed ID: 28029246 [TBL] [Abstract][Full Text] [Related]
3. Novel therapeutic core-shell hydrogel scaffolds with sequential delivery of cobalt and bone morphogenetic protein-2 for synergistic bone regeneration. Perez RA; Kim JH; Buitrago JO; Wall IB; Kim HW Acta Biomater; 2015 Sep; 23():295-308. PubMed ID: 26054564 [TBL] [Abstract][Full Text] [Related]
4. Bioactive Membrane Immobilized with Lactoferrin for Modulation of Bone Regeneration and Inflammation. Lee J; Lee J; Lee S; Ahmad T; Madhurakkat Perikamana SK; Kim EM; Lee SW; Shin H Tissue Eng Part A; 2020 Dec; 26(23-24):1243-1258. PubMed ID: 32324097 [TBL] [Abstract][Full Text] [Related]
5. Effects of nanofibers on mesenchymal stem cells: environmental factors affecting cell adhesion and osteogenic differentiation and their mechanisms. Yu D; Wang J; Qian KJ; Yu J; Zhu HY J Zhejiang Univ Sci B; 2020 Nov.; 21(11):871-884. PubMed ID: 33150771 [TBL] [Abstract][Full Text] [Related]
6. 3D-printed scaffolds with carbon nanotubes for bone tissue engineering: Fast and homogeneous one-step functionalization. Liu X; George MN; Park S; Miller Ii AL; Gaihre B; Li L; Waletzki BE; Terzic A; Yaszemski MJ; Lu L Acta Biomater; 2020 Jul; 111():129-140. PubMed ID: 32428680 [TBL] [Abstract][Full Text] [Related]
7. Supercritical CO Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054 [TBL] [Abstract][Full Text] [Related]
8. Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration. Singh RK; Jin GZ; Mahapatra C; Patel KD; Chrzanowski W; Kim HW ACS Appl Mater Interfaces; 2015 Apr; 7(15):8088-98. PubMed ID: 25768431 [TBL] [Abstract][Full Text] [Related]
9. Angiogenesis-promoted bone repair with silicate-shelled hydrogel fiber scaffolds. Dashnyam K; Buitrago JO; Bold T; Mandakhbayar N; Perez RA; Knowles JC; Lee JH; Kim HW Biomater Sci; 2019 Nov; 7(12):5221-5231. PubMed ID: 31595890 [TBL] [Abstract][Full Text] [Related]
10. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
11. Multilayered coating of titanium implants promotes coupled osteogenesis and angiogenesis in vitro and in vivo. Chen W; Xu K; Tao B; Dai L; Yu Y; Mu C; Shen X; Hu Y; He Y; Cai K Acta Biomater; 2018 Jul; 74():489-504. PubMed ID: 29702291 [TBL] [Abstract][Full Text] [Related]
12. Surface engineering of 3D-printed scaffolds with minerals and a pro-angiogenic factor for vascularized bone regeneration. Lee J; Huh SJ; Seok JM; Lee S; Byun H; Jang GN; Kim E; Kim SJ; Park SA; Kim SM; Shin H Acta Biomater; 2022 Mar; 140():730-744. PubMed ID: 34896633 [TBL] [Abstract][Full Text] [Related]
13. Mussel-inspired multifunctional surface through promoting osteogenesis and inhibiting osteoclastogenesis to facilitate bone regeneration. Wu M; Zhang Y; Wu P; Chen F; Yang Z; Zhang S; Xiao L; Cai L; Zhang C; Chen Y; Deng Z NPJ Regen Med; 2022 May; 7(1):29. PubMed ID: 35562356 [TBL] [Abstract][Full Text] [Related]
14. Electrospun conductive nanofiber yarns for accelerating mesenchymal stem cells differentiation and maturation into Schwann cell-like cells under a combination of electrical stimulation and chemical induction. Wu S; Qi Y; Shi W; Kuss M; Chen S; Duan B Acta Biomater; 2022 Feb; 139():91-104. PubMed ID: 33271357 [TBL] [Abstract][Full Text] [Related]
15. Early In Vivo Osteogenic and Inflammatory Response of 3D Printed Polycaprolactone/Carbon Nanotube/Hydroxyapatite/Tricalcium Phosphate Composite Scaffolds. Nalesso PRL; Vedovatto M; Gregório JES; Huang B; Vyas C; Santamaria-Jr M; Bártolo P; Caetano GF Polymers (Basel); 2023 Jul; 15(13):. PubMed ID: 37447597 [TBL] [Abstract][Full Text] [Related]
16. Electrospun scaffolds for multiple tissues regeneration in vivo through topography dependent induction of lineage specific differentiation. Yin Z; Chen X; Song HX; Hu JJ; Tang QM; Zhu T; Shen WL; Chen JL; Liu H; Heng BC; Ouyang HW Biomaterials; 2015 Mar; 44():173-85. PubMed ID: 25617136 [TBL] [Abstract][Full Text] [Related]
17. A xonotlite nanofiber bioactive 3D-printed hydrogel scaffold based on osteo-/angiogenesis and osteoimmune microenvironment remodeling accelerates vascularized bone regeneration. Yang SY; Zhou YN; Yu XG; Fu ZY; Zhao CC; Hu Y; Lin KL; Xu YJ J Nanobiotechnology; 2024 Feb; 22(1):59. PubMed ID: 38347563 [TBL] [Abstract][Full Text] [Related]
18. Functionalized carbon nanotubes as suitable scaffold materials for proliferation and differentiation of canine mesenchymal stem cells. Das K; Madhusoodan AP; Mili B; Kumar A; Saxena AC; Kumar K; Sarkar M; Singh P; Srivastava S; Bag S Int J Nanomedicine; 2017; 12():3235-3252. PubMed ID: 28458543 [TBL] [Abstract][Full Text] [Related]
19. Hierarchical microchanneled scaffolds modulate multiple tissue-regenerative processes of immune-responses, angiogenesis, and stem cell homing. Won JE; Lee YS; Park JH; Lee JH; Shin YS; Kim CH; Knowles JC; Kim HW Biomaterials; 2020 Jan; 227():119548. PubMed ID: 31670033 [TBL] [Abstract][Full Text] [Related]
20. Dense carbon-nanotube coating scaffolds stimulate osteogenic differentiation of mesenchymal stem cells. Mori H; Ogura Y; Enomoto K; Hara M; Maurstad G; Stokke BT; Kitamura S PLoS One; 2020; 15(1):e0225589. PubMed ID: 31923243 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]