These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 32165193)
21. Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering. Won JE; Yun YR; Jang JH; Yang SH; Kim JH; Chrzanowski W; Wall IB; Knowles JC; Kim HW Biomaterials; 2015 Jul; 56():46-57. PubMed ID: 25934278 [TBL] [Abstract][Full Text] [Related]
22. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials. Duan S; Yang X; Mei F; Tang Y; Li X; Shi Y; Mao J; Zhang H; Cai Q J Biomed Mater Res A; 2015 Apr; 103(4):1424-35. PubMed ID: 25046153 [TBL] [Abstract][Full Text] [Related]
23. Construction of a nanofiber network within 3D printed scaffolds for vascularized bone regeneration. Geng M; Zhang Q; Gu J; Yang J; Du H; Jia Y; Zhou X; He C Biomater Sci; 2021 Apr; 9(7):2631-2646. PubMed ID: 33595010 [TBL] [Abstract][Full Text] [Related]
24. Polycaprolactone nanofiber scaffold enhances the osteogenic differentiation potency of various human tissue-derived mesenchymal stem cells. Xue R; Qian Y; Li L; Yao G; Yang L; Sun Y Stem Cell Res Ther; 2017 Jun; 8(1):148. PubMed ID: 28646917 [TBL] [Abstract][Full Text] [Related]
25. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161 [TBL] [Abstract][Full Text] [Related]
26. A Hierarchical-Structured Mineralized Nanofiber Scaffold with Osteoimmunomodulatory and Osteoinductive Functions for Enhanced Alveolar Bone Regeneration. He Y; Tian M; Li X; Hou J; Chen S; Yang G; Liu X; Zhou S Adv Healthc Mater; 2022 Feb; 11(3):e2102236. PubMed ID: 34779582 [TBL] [Abstract][Full Text] [Related]
27. Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating. Jin GZ; Kim M; Shin US; Kim HW Neurosci Lett; 2011 Aug; 501(1):10-4. PubMed ID: 21723372 [TBL] [Abstract][Full Text] [Related]
28. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo. Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127 [TBL] [Abstract][Full Text] [Related]
29. Biointerface control of electrospun fiber scaffolds for bone regeneration: engineered protein link to mineralized surface. Lee JH; Park JH; El-Fiqi A; Kim JH; Yun YR; Jang JH; Han CM; Lee EJ; Kim HW Acta Biomater; 2014 Jun; 10(6):2750-61. PubMed ID: 24468581 [TBL] [Abstract][Full Text] [Related]
30. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Park S; Park J; Jo I; Cho SP; Sung D; Ryu S; Park M; Min KA; Kim J; Hong S; Hong BH; Kim BS Biomaterials; 2015 Jul; 58():93-102. PubMed ID: 25941786 [TBL] [Abstract][Full Text] [Related]
31. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering. Gao X; Zhang X; Song J; Xu X; Xu A; Wang M; Xie B; Huang E; Deng F; Wei S Int J Nanomedicine; 2015; 10():7109-28. PubMed ID: 26604759 [TBL] [Abstract][Full Text] [Related]
32. Electrospun PLGA/PCL/OCP nanofiber membranes promote osteogenic differentiation of mesenchymal stem cells (MSCs). Wang Z; Liang R; Jiang X; Xie J; Cai P; Chen H; Zhan X; Lei D; Zhao J; Zheng L Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109796. PubMed ID: 31500029 [TBL] [Abstract][Full Text] [Related]
33. Nanofiber arrangement regulates peripheral nerve regeneration through differential modulation of macrophage phenotypes. Jia Y; Yang W; Zhang K; Qiu S; Xu J; Wang C; Chai Y Acta Biomater; 2019 Jan; 83():291-301. PubMed ID: 30541701 [TBL] [Abstract][Full Text] [Related]
34. Diabetic bone regeneration with nanoceria-tailored scaffolds by recapitulating cellular microenvironment: Activating integrin/TGF-β co-signaling of MSCs while relieving oxidative stress. Singh RK; Yoon DS; Mandakhbayar N; Li C; Kurian AG; Lee NH; Lee JH; Kim HW Biomaterials; 2022 Sep; 288():121732. PubMed ID: 36031457 [TBL] [Abstract][Full Text] [Related]
36. Biomimetic bone tissue engineering hydrogel scaffolds constructed using ordered CNTs and HA induce the proliferation and differentiation of BMSCs. Liu L; Yang B; Wang LQ; Huang JP; Chen WY; Ban Q; Zhang Y; You R; Yin L; Guan YQ J Mater Chem B; 2020 Jan; 8(3):558-567. PubMed ID: 31854433 [TBL] [Abstract][Full Text] [Related]
37. Polydopamine-Coated Poly(l-lactide) Nanofibers with Controlled Release of VEGF and BMP-2 as a Regenerative Periosteum. Sun H; Dong J; Wang Y; Shen S; Shi Y; Zhang L; Zhao J; Sun X; Jiang Q ACS Biomater Sci Eng; 2021 Oct; 7(10):4883-4897. PubMed ID: 34472855 [TBL] [Abstract][Full Text] [Related]
38. Osteogenesis of peripheral blood mesenchymal stem cells in self assembling peptide nanofiber for healing critical size calvarial bony defect. Wu G; Pan M; Wang X; Wen J; Cao S; Li Z; Li Y; Qian C; Liu Z; Wu W; Zhu L; Guo J Sci Rep; 2015 Nov; 5():16681. PubMed ID: 26568114 [TBL] [Abstract][Full Text] [Related]
39. Biomimetic mineralization of carboxymethyl chitosan nanofibers with improved osteogenic activity in vitro and in vivo. Zhao X; Zhou L; Li Q; Zou Q; Du C Carbohydr Polym; 2018 Sep; 195():225-234. PubMed ID: 29804972 [TBL] [Abstract][Full Text] [Related]
40. Composite Superelastic Aerogel Scaffolds Containing Flexible SiO Liu M; Shafiq M; Sun B; Wu J; Wang W; El-Newehy M; El-Hamshary H; Morsi Y; Ali O; Khan AUR; Mo X Adv Healthc Mater; 2022 Aug; 11(15):e2200499. PubMed ID: 35670086 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]