These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 32165223)
1. Effects of lecithin-based nanoemulsions on skin: Short-time cytotoxicity MTT and BrdU studies, skin penetration of surfactants and additives and the delivery of curcumin. Vater C; Hlawaty V; Werdenits P; Cichoń MA; Klang V; Elbe-Bürger A; Wirth M; Valenta C Int J Pharm; 2020 Apr; 580():119209. PubMed ID: 32165223 [TBL] [Abstract][Full Text] [Related]
2. Cytotoxicity of lecithin-based nanoemulsions on human skin cells and ex vivo skin permeation: Comparison to conventional surfactant types. Vater C; Adamovic A; Ruttensteiner L; Steiner K; Tajpara P; Klang V; Elbe-Bürger A; Wirth M; Valenta C Int J Pharm; 2019 Jul; 566():383-390. PubMed ID: 31158455 [TBL] [Abstract][Full Text] [Related]
4. Role of architecture of N-oxide surfactants in the design of nanoemulsions for Candida skin infection. Lewińska A; Jaromin A; Jezierska J Colloids Surf B Biointerfaces; 2020 Mar; 187():110639. PubMed ID: 31776055 [TBL] [Abstract][Full Text] [Related]
5. Effect of nanostructured lipid vehicles on percutaneous absorption of curcumin. Esposito E; Ravani L; Mariani P; Huang N; Boldrini P; Drechsler M; Valacchi G; Cortesi R; Puglia C Eur J Pharm Biopharm; 2014 Feb; 86(2):121-32. PubMed ID: 24361485 [TBL] [Abstract][Full Text] [Related]
6. Curcumin-loaded nanoemulsions stability as affected by the nature and concentration of surfactant. Artiga-Artigas M; Lanjari-Pérez Y; Martín-Belloso O Food Chem; 2018 Nov; 266():466-474. PubMed ID: 30381213 [TBL] [Abstract][Full Text] [Related]
7. Development of sucrose stearate-based nanoemulsions and optimisation through γ-cyclodextrin. Klang V; Matsko N; Raupach K; El-Hagin N; Valenta C Eur J Pharm Biopharm; 2011 Sep; 79(1):58-67. PubMed ID: 21277976 [TBL] [Abstract][Full Text] [Related]
8. NLC versus nanoemulsions: Effect on physiological skin parameters during regular in vivo application and impact on drug penetration. Wolf M; Klang V; Stojcic T; Fuchs C; Wolzt M; Valenta C Int J Pharm; 2018 Oct; 549(1-2):343-351. PubMed ID: 30099212 [TBL] [Abstract][Full Text] [Related]
9. In vitro vs. in vivo tape stripping: validation of the porcine ear model and penetration assessment of novel sucrose stearate emulsions. Klang V; Schwarz JC; Lenobel B; Nadj M; Auböck J; Wolzt M; Valenta C Eur J Pharm Biopharm; 2012 Apr; 80(3):604-14. PubMed ID: 22123494 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous penetration monitoring of oil component and active drug from fluorinated nanoemulsions. Binder L; Jatschka J; Kulovits EM; Seeböck S; Kählig H; Valenta C Int J Pharm; 2018 Dec; 552(1-2):312-318. PubMed ID: 30308268 [TBL] [Abstract][Full Text] [Related]
11. Distribution of phospholipid based formulations in the skin investigated by combined ATR-FTIR and tape stripping experiments. Wolf M; Halper M; Pribyl R; Baurecht D; Valenta C Int J Pharm; 2017 Mar; 519(1-2):198-205. PubMed ID: 28108328 [TBL] [Abstract][Full Text] [Related]
12. Preparation of curcumin microemulsions with food-grade soybean oil/lecithin and their cytotoxicity on the HepG2 cell line. Lin CC; Lin HY; Chi MH; Shen CM; Chen HW; Yang WJ; Lee MH Food Chem; 2014 Jul; 154():282-90. PubMed ID: 24518344 [TBL] [Abstract][Full Text] [Related]
13. An insight on human skin penetration of diflunisal: lipogel versus hydrogel microemulsion. Sallam MA; Motawaa AM; Mortada SM Drug Dev Ind Pharm; 2015 Jan; 41(1):141-7. PubMed ID: 24171693 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic Evaluation of Enhanced Curcumin Delivery through Human Skin In Vitro from Optimised Nanoemulsion Formulations Fabricated with Different Penetration Enhancers. Yousef SA; Mohammed YH; Namjoshi S; Grice JE; Benson HAE; Sakran W; Roberts MS Pharmaceutics; 2019 Dec; 11(12):. PubMed ID: 31805660 [TBL] [Abstract][Full Text] [Related]
15. The role of the lecithin addition in the properties and cytotoxic activity of chitosan and chondroitin sulfate nanoparticles containing curcumin. Jardim KV; Siqueira JLN; Báo SN; Sousa MH; Parize AL Carbohydr Polym; 2020 Jan; 227():115351. PubMed ID: 31590861 [TBL] [Abstract][Full Text] [Related]
16. Physical Stability, Autoxidation, and Photosensitized Oxidation of ω-3 Oils in Nanoemulsions Prepared with Natural and Synthetic Surfactants. Uluata S; McClements DJ; Decker EA J Agric Food Chem; 2015 Oct; 63(42):9333-40. PubMed ID: 26452408 [TBL] [Abstract][Full Text] [Related]
17. Controlled penetration of ceramides into and across the stratum corneum using various types of microemulsions and formulation associated toxicity studies. Sahle FF; Wohlrab J; Neubert RH Eur J Pharm Biopharm; 2014 Feb; 86(2):244-50. PubMed ID: 23896195 [TBL] [Abstract][Full Text] [Related]
18. Lecithin-based nanoemulsions of traditional herbal wound healing agents and their effect on human skin cells. Vater C; Bosch L; Mitter A; Göls T; Seiser S; Heiss E; Elbe-Bürger A; Wirth M; Valenta C; Klang V Eur J Pharm Biopharm; 2022 Jan; 170():1-9. PubMed ID: 34798283 [TBL] [Abstract][Full Text] [Related]
19. Validation of the combined ATR-FTIR/tape stripping technique for monitoring the distribution of surfactants in the stratum corneum. Hoppel M; Baurecht D; Holper E; Mahrhauser D; Valenta C Int J Pharm; 2014 Sep; 472(1-2):88-93. PubMed ID: 24928132 [TBL] [Abstract][Full Text] [Related]
20. Biopharmaceutical Assessment and Irritation Potential of Microemulsions and Conventional Systems Containing Oil from Syagrus cearensis for Topical Delivery of Amphotericin B Using Alternative Methods. Sousa GD; Kishishita J; Aquino KAS; Presgrave OAF; Leal LB; Santana DP AAPS PharmSciTech; 2017 Jul; 18(5):1833-1842. PubMed ID: 27834055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]