BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 32165537)

  • 41. ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway.
    Liu XL; Covington MF; Fankhauser C; Chory J; Wagner DR
    Plant Cell; 2001 Jun; 13(6):1293-304. PubMed ID: 11402161
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ELF3 controls thermoresponsive growth in Arabidopsis.
    Box MS; Huang BE; Domijan M; Jaeger KE; Khattak AK; Yoo SJ; Sedivy EL; Jones DM; Hearn TJ; Webb AAR; Grant A; Locke JCW; Wigge PA
    Curr Biol; 2015 Jan; 25(2):194-199. PubMed ID: 25557663
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diurnal dependence of growth responses to shade in Arabidopsis: role of hormone, clock, and light signaling.
    Sellaro R; PacĂ­n M; Casal JJ
    Mol Plant; 2012 May; 5(3):619-28. PubMed ID: 22311777
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light.
    Nefissi R; Natsui Y; Miyata K; Oda A; Hase Y; Nakagawa M; Ghorbel A; Mizoguchi T
    J Exp Bot; 2011 May; 62(8):2731-44. PubMed ID: 21296763
    [TBL] [Abstract][Full Text] [Related]  

  • 45. AtMBD9 modulates Arabidopsis development through the dual epigenetic pathways of DNA methylation and histone acetylation.
    Yaish MW; Peng M; Rothstein SJ
    Plant J; 2009 Jul; 59(1):123-35. PubMed ID: 19419532
    [TBL] [Abstract][Full Text] [Related]  

  • 46. GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation.
    Martin-Tryon EL; Kreps JA; Harmer SL
    Plant Physiol; 2007 Jan; 143(1):473-86. PubMed ID: 17098855
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of Phase Separation of EARLY FLOWERING 3.
    Peng M; Hutin S; Mironova A; Zubieta C; Wigge PA
    Methods Mol Biol; 2024; 2795():123-134. PubMed ID: 38594534
    [TBL] [Abstract][Full Text] [Related]  

  • 48. PIF-independent regulation of growth by an evening complex in the liverwort Marchantia polymorpha.
    Lagercrantz U; Billhardt A; Rousku SN; Landberg K; Thelander M; Eklund DM
    PLoS One; 2022; 17(6):e0269984. PubMed ID: 35709169
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter.
    Miao Y; Laun TM; Smykowski A; Zentgraf U
    Plant Mol Biol; 2007 Sep; 65(1-2):63-76. PubMed ID: 17587183
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time.
    Kim WY; Hicks KA; Somers DE
    Plant Physiol; 2005 Nov; 139(3):1557-69. PubMed ID: 16258016
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Myb domain of LUX ARRHYTHMO in complex with DNA: expression, purification and crystallization.
    Silva CS; Lai X; Nanao M; Zubieta C
    Acta Crystallogr F Struct Biol Commun; 2016 May; 72(Pt 5):356-61. PubMed ID: 27139826
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural insights into target DNA recognition by R2R3-MYB transcription factors.
    Wang B; Luo Q; Li Y; Yin L; Zhou N; Li X; Gan J; Dong A
    Nucleic Acids Res; 2020 Jan; 48(1):460-471. PubMed ID: 31733060
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Involvement of Arabidopsis clock-associated pseudo-response regulators in diurnal oscillations of gene expression in the presence of environmental time cues.
    Yamashino T; Ito S; Niwa Y; Kunihiro A; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2008 Dec; 49(12):1839-50. PubMed ID: 19015137
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RFI2, a RING-domain zinc finger protein, negatively regulates CONSTANS expression and photoperiodic flowering.
    Chen M; Ni M
    Plant J; 2006 Jun; 46(5):823-33. PubMed ID: 16709197
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding.
    Gutsche N; Zachgo S
    PLoS One; 2016; 11(4):e0153810. PubMed ID: 27128442
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis.
    Liu C; Chen H; Er HL; Soo HM; Kumar PP; Han JH; Liou YC; Yu H
    Development; 2008 Apr; 135(8):1481-91. PubMed ID: 18339670
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Circadian clock and photoperiodic response in Arabidopsis: from seasonal flowering to redox homeostasis.
    Shim JS; Imaizumi T
    Biochemistry; 2015 Jan; 54(2):157-70. PubMed ID: 25346271
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Luciferase-Based Screen for Post-translational Control Factors in the Regulation of the Pseudo-Response Regulator PRR7.
    Kim YJ; Somers DE
    Front Plant Sci; 2019; 10():667. PubMed ID: 31191580
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering.
    Castillejo C; Pelaz S
    Curr Biol; 2008 Sep; 18(17):1338-43. PubMed ID: 18718758
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Circadian-controlled basic/helix-loop-helix factor, PIL6, implicated in light-signal transduction in Arabidopsis thaliana.
    Fujimori T; Yamashino T; Kato T; Mizuno T
    Plant Cell Physiol; 2004 Aug; 45(8):1078-86. PubMed ID: 15356333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.