BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 32165583)

  • 1. Cryo-EM structure of a neuronal functional amyloid implicated in memory persistence in
    Hervas R; Rau MJ; Park Y; Zhang W; Murzin AG; Fitzpatrick JAJ; Scheres SHW; Si K
    Science; 2020 Mar; 367(6483):1230-1234. PubMed ID: 32165583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-electron diffraction structure of the aggregation-driving N terminus of Drosophila neuronal protein Orb2A reveals amyloid-like β-sheets.
    Bowler JT; Sawaya MR; Boyer DR; Cascio D; Bali M; Eisenberg DS
    J Biol Chem; 2022 Oct; 298(10):102396. PubMed ID: 35988647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amyloidogenic Oligomerization Transforms Drosophila Orb2 from a Translation Repressor to an Activator.
    Khan MR; Li L; Pérez-Sánchez C; Saraf A; Florens L; Slaughter BD; Unruh JR; Si K
    Cell; 2015 Dec; 163(6):1468-83. PubMed ID: 26638074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory.
    Majumdar A; Cesario WC; White-Grindley E; Jiang H; Ren F; Khan MR; Li L; Choi EM; Kannan K; Guo F; Unruh J; Slaughter B; Si K
    Cell; 2012 Feb; 148(3):515-29. PubMed ID: 22284910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal Binding Properties of the N-Terminus of the Functional Amyloid Orb2.
    Bajakian TH; Cervantes SA; Soria MA; Beaugrand M; Kim JY; Service RJ; Siemer AB
    Biomolecules; 2017 Aug; 7(3):. PubMed ID: 28763009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Droplet and fibril formation of the functional amyloid Orb2.
    Ashami K; Falk AS; Hurd C; Garg S; Cervantes SA; Rawat A; Siemer AB
    J Biol Chem; 2021 Jul; 297(1):100804. PubMed ID: 34044018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and Structural Characterization of the N-terminal Amyloid Core of Orb2 isoform A.
    Cervantes SA; Bajakian TH; Soria MA; Falk AS; Service RJ; Langen R; Siemer AB
    Sci Rep; 2016 Dec; 6():38265. PubMed ID: 27922050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Basis of Orb2 Amyloidogenesis and Blockade of Memory Consolidation.
    Hervás R; Li L; Majumdar A; Fernández-Ramírez Mdel C; Unruh JR; Slaughter BD; Galera-Prat A; Santana E; Suzuki M; Nagai Y; Bruix M; Casas-Tintó S; Menéndez M; Laurents DV; Si K; Carrión-Vázquez M
    PLoS Biol; 2016 Jan; 14(1):e1002361. PubMed ID: 26812143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergent CPEB prion-like domains reveal different assembly mechanisms for a generic amyloid-like fold.
    Hervás R; Del Carmen Fernández-Ramírez M; Galera-Prat A; Suzuki M; Nagai Y; Bruix M; Menéndez M; Laurents DV; Carrión-Vázquez M
    BMC Biol; 2021 Mar; 19(1):43. PubMed ID: 33706787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Functional Amyloid Orb2A Binds to Lipid Membranes.
    Soria MA; Cervantes SA; Bajakian TH; Siemer AB
    Biophys J; 2017 Jul; 113(1):37-47. PubMed ID: 28700922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of Orb2A stability in regulated amyloid-like oligomerization of Drosophila Orb2.
    White-Grindley E; Li L; Mohammad Khan R; Ren F; Saraf A; Florens L; Si K
    PLoS Biol; 2014 Feb; 12(2):e1001786. PubMed ID: 24523662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of the Orb2 Amyloid Structure in Huntington's Disease.
    Hervás R; Murzin AG; Si K
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32967102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drosophila Orb2 targets genes involved in neuronal growth, synapse formation, and protein turnover.
    Mastushita-Sakai T; White-Grindley E; Samuelson J; Seidel C; Si K
    Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11987-92. PubMed ID: 20547833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural transitions in Orb2 prion-like domain relevant for functional aggregation in memory consolidation.
    Oroz J; Félix SS; Cabrita EJ; Laurents DV
    J Biol Chem; 2020 Dec; 295(52):18122-18133. PubMed ID: 33093173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-Term Memory Formation in
    Kozlov EN; Tokmatcheva EV; Khrustaleva AM; Grebenshchikov ES; Deev RV; Gilmutdinov RA; Lebedeva LA; Zhukova M; Savvateeva-Popova EV; Schedl P; Shidlovskii YV
    Cells; 2023 Jan; 12(2):. PubMed ID: 36672258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Drosophila lingerer protein cooperates with Orb2 in long-term memory formation.
    Kimura S; Sakakibara Y; Sato K; Ote M; Ito H; Koganezawa M; Yamamoto D
    J Neurogenet; 2015 Mar; 29(1):8-17. PubMed ID: 24913805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB).
    Heinrich SU; Lindquist S
    Proc Natl Acad Sci U S A; 2011 Feb; 108(7):2999-3004. PubMed ID: 21270333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Putative Biochemical Engram of Long-Term Memory.
    Li L; Sanchez CP; Slaughter BD; Zhao Y; Khan MR; Unruh JR; Rubinstein B; Si K
    Curr Biol; 2016 Dec; 26(23):3143-3156. PubMed ID: 27818176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drosophila CPEB Orb2A mediates memory independent of Its RNA-binding domain.
    Krüttner S; Stepien B; Noordermeer JN; Mommaas MA; Mechtler K; Dickson BJ; Keleman K
    Neuron; 2012 Oct; 76(2):383-95. PubMed ID: 23083740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy landscapes of a mechanical prion and their implications for the molecular mechanism of long-term memory.
    Chen M; Zheng W; Wolynes PG
    Proc Natl Acad Sci U S A; 2016 May; 113(18):5006-11. PubMed ID: 27091989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.