BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 32165635)

  • 1. Lipidomic and biophysical homeostasis of mammalian membranes counteracts dietary lipid perturbations to maintain cellular fitness.
    Levental KR; Malmberg E; Symons JL; Fan YY; Chapkin RS; Ernst R; Levental I
    Nat Commun; 2020 Mar; 11(1):1339. PubMed ID: 32165635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homeostatic control of membrane fatty acid composition in the rat after dietary lipid treatment.
    Gibson RA; McMurchie EJ; Charnock JS; Kneebone GM
    Lipids; 1984 Dec; 19(12):942-51. PubMed ID: 6527613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of dietary lipids on plasma lipoproteins and fluidity of lymphoid cell membranes in normal and leukemic mice.
    Damen J; De Widt J; Hilkmann H; Van Blitterswijk WJ
    Biochim Biophys Acta; 1988 Aug; 943(2):166-74. PubMed ID: 3401476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variations in dietary triacylglycerol saturation alter the lipid composition and fluidity of rat intestinal plasma membranes.
    Brasitus TA; Davidson NO; Schachter D
    Biochim Biophys Acta; 1985 Jan; 812(2):460-72. PubMed ID: 3967022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of cis and trans fatty acid containing phosphatidylcholines on membrane properties.
    Roach C; Feller SE; Ward JA; Shaikh SR; Zerouga M; Stillwell W
    Biochemistry; 2004 May; 43(20):6344-51. PubMed ID: 15147219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homeoviscous Adaptation and the Regulation of Membrane Lipids.
    Ernst R; Ejsing CS; Antonny B
    J Mol Biol; 2016 Dec; 428(24 Pt A):4776-4791. PubMed ID: 27534816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid composition and fluidity of liver plasma membranes from rats with chronic dietary iron overload.
    Pietrangelo A; Tripodi A; Carulli N; Tomasi A; Ceccarelli D; Ventura E; Masini A
    J Bioenerg Biomembr; 1989 Aug; 21(4):527-33. PubMed ID: 2808330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of dietary lipids on the composition and membrane fluidity of rat hepatocyte plasma membrane.
    Clamp AG; Ladha S; Clark DC; Grimble RF; Lund EK
    Lipids; 1997 Feb; 32(2):179-84. PubMed ID: 9075208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipidomic and Ultrastructural Characterization of the Cell Envelope of Staphylococcus aureus Grown in the Presence of Human Serum.
    Hines KM; Alvarado G; Chen X; Gatto C; Pokorny A; Alonzo F; Wilkinson BJ; Xu L
    mSphere; 2020 Jun; 5(3):. PubMed ID: 32554713
    [No Abstract]   [Full Text] [Related]  

  • 10. Dietary fats and membrane function: implications for metabolism and disease.
    Hulbert AJ; Turner N; Storlien LH; Else PL
    Biol Rev Camb Philos Soc; 2005 Feb; 80(1):155-69. PubMed ID: 15727042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The C. elegans PAQR-2 and IGLR-2 membrane homeostasis proteins are uniquely essential for tolerating dietary saturated fats.
    Devkota R; Henricsson M; Borén J; Pilon M
    Biochim Biophys Acta Mol Cell Biol Lipids; 2021 Apr; 1866(4):158883. PubMed ID: 33444761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in lipid deposition and adipose membrane biophysical properties from lean and obese pigs under dietary protein restriction.
    Martins AP; Lopes PA; Madeira MS; Martins SV; Santos NC; Moura TF; Prates JA; Soveral G
    Biochem Biophys Res Commun; 2012 Jun; 423(1):170-5. PubMed ID: 22640734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of membrane lipid homeostasis by lipid-bilayer associated sensors: A mechanism conserved from bacteria to humans.
    de Mendoza D; Pilon M
    Prog Lipid Res; 2019 Oct; 76():100996. PubMed ID: 31449824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatty acid modification and membrane lipids.
    Wahle KW
    Proc Nutr Soc; 1983 Jun; 42(2):273-87. PubMed ID: 6351085
    [No Abstract]   [Full Text] [Related]  

  • 15. ω-3 polyunsaturated fatty acids direct differentiation of the membrane phenotype in mesenchymal stem cells to potentiate osteogenesis.
    Levental KR; Surma MA; Skinkle AD; Lorent JH; Zhou Y; Klose C; Chang JT; Hancock JF; Levental I
    Sci Adv; 2017 Nov; 3(11):eaao1193. PubMed ID: 29134198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acid-related modulations of membrane fluidity in cells: detection and implications.
    Maulucci G; Cohen O; Daniel B; Sansone A; Petropoulou PI; Filou S; Spyridonidis A; Pani G; De Spirito M; Chatgilialoglu C; Ferreri C; Kypreos KE; Sasson S
    Free Radic Res; 2016 Nov; 50(sup1):S40-S50. PubMed ID: 27593084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of dietary fatty acid and cholesterol on catecholamine-stimulated adenylate cyclase activity in the rat heart.
    McMurchie EJ; Patten GS; Charnock JS; McLennan PL
    Biochim Biophys Acta; 1987 Apr; 898(2):137-53. PubMed ID: 3030424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of rat heart membranes and associated ion-transporting ATPases to dietary lipid.
    Abeywardena MY; McMurchie EJ; Russell GR; Sawyer WH; Charnock JS
    Biochim Biophys Acta; 1984 Sep; 776(1):48-59. PubMed ID: 6089884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in lipid composition and fluidity of liver plasma membranes in copper-deficient rats.
    Lei KY; Rosenstein F; Shi F; Hassel CA; Carr TP; Zhang J
    Proc Soc Exp Biol Med; 1988 Jul; 188(3):335-41. PubMed ID: 2969111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restored in vivo-like membrane lipidomics positively influence in vitro features of cultured mesenchymal stromal/stem cells derived from human placenta.
    Chatgilialoglu A; Rossi M; Alviano F; Poggi P; Zannini C; Marchionni C; Ricci F; Tazzari PL; Taglioli V; Calder PC; Bonsi L
    Stem Cell Res Ther; 2017 Feb; 8(1):31. PubMed ID: 28173875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.