These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32165637)

  • 21. Human Mcm proteins at a replication origin during the G1 to S phase transition.
    Schaarschmidt D; Ladenburger EM; Keller C; Knippers R
    Nucleic Acids Res; 2002 Oct; 30(19):4176-85. PubMed ID: 12364596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histone H1 compacts DNA under force and during chromatin assembly.
    Xiao B; Freedman BS; Miller KE; Heald R; Marko JF
    Mol Biol Cell; 2012 Dec; 23(24):4864-71. PubMed ID: 23097493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments.
    Kolinjivadi AM; Sannino V; De Antoni A; Zadorozhny K; Kilkenny M; Técher H; Baldi G; Shen R; Ciccia A; Pellegrini L; Krejci L; Costanzo V
    Mol Cell; 2017 Sep; 67(5):867-881.e7. PubMed ID: 28757209
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of histone H2B ubiquitylation on the nucleosome structure and dynamics.
    Krajewski WA; Li J; Dou Y
    Nucleic Acids Res; 2018 Sep; 46(15):7631-7642. PubMed ID: 29931239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Xenopus CDC7/DRF1 complex is required for the initiation of DNA replication.
    Silva T; Bradley RH; Gao Y; Coue M
    J Biol Chem; 2006 Apr; 281(17):11569-76. PubMed ID: 16507577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of the Xenopus Xsox17alpha(1) promoter by co-operating VegT and Sox17 sites.
    Howard L; Rex M; Clements D; Woodland HR
    Dev Biol; 2007 Oct; 310(2):402-15. PubMed ID: 17719026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutant analysis of Cdt1's function in suppressing nascent strand elongation during DNA replication in Xenopus egg extracts.
    Nakazaki Y; Tsuyama T; Azuma Y; Takahashi M; Tada S
    Biochem Biophys Res Commun; 2017 Sep; 490(4):1375-1380. PubMed ID: 28694193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lamin B receptor-mediated chromatin tethering to the nuclear envelope is detrimental to the Xenopus blastula.
    Oda H; Kato S; Ohsumi K; Iwabuchi M
    J Biochem; 2021 Apr; 169(3):313-326. PubMed ID: 33169160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Altered expression of Chk1 disrupts cell cycle remodeling at the midblastula transition in Xenopus laevis embryos.
    Petrus MJ; Wilhelm DE; Murakami M; Kappas NC; Carter AD; Wroble BN; Sible JC
    Cell Cycle; 2004 Feb; 3(2):212-7. PubMed ID: 14712091
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromatin regulates origin activity in Drosophila follicle cells.
    Aggarwal BD; Calvi BR
    Nature; 2004 Jul; 430(6997):372-6. PubMed ID: 15254542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis.
    Maiorano D; Moreau J; Méchali M
    Nature; 2000 Apr; 404(6778):622-5. PubMed ID: 10766247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SSRP1 Cooperates with PARP and XRCC1 to Facilitate Single-Strand DNA Break Repair by Chromatin Priming.
    Gao Y; Li C; Wei L; Teng Y; Nakajima S; Chen X; Xu J; Leger B; Ma H; Spagnol ST; Wan Y; Dahl KN; Liu Y; Levine AS; Lan L
    Cancer Res; 2017 May; 77(10):2674-2685. PubMed ID: 28416484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromatin transitions during early Xenopus embryogenesis: changes in histone H4 acetylation and in linker histone type.
    Dimitrov S; Almouzni G; Dasso M; Wolffe AP
    Dev Biol; 1993 Nov; 160(1):214-27. PubMed ID: 8224538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell cycle-dependent regulation of the association between origin recognition proteins and somatic cell chromatin.
    Sun WH; Coleman TR; DePamphilis ML
    EMBO J; 2002 Mar; 21(6):1437-46. PubMed ID: 11889049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development: Replication factors make the transition.
    Stower H
    Nat Rev Genet; 2013 Sep; 14(9):598. PubMed ID: 23938364
    [No Abstract]   [Full Text] [Related]  

  • 36. The roles of the MCM, ORC, and Cdc6 proteins in determining the replication competence of chromatin in quiescent cells.
    Madine MA; Swietlik M; Pelizon C; Romanowski P; Mills AD; Laskey RA
    J Struct Biol; 2000 Apr; 129(2-3):198-210. PubMed ID: 10806069
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remodeling somatic nuclei in Xenopus laevis egg extracts: molecular mechanisms for the selective release of histones H1 and H1(0) from chromatin and the acquisition of transcriptional competence.
    Dimitrov S; Wolffe AP
    EMBO J; 1996 Nov; 15(21):5897-906. PubMed ID: 8918467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Geminin prevents rereplication during xenopus development.
    Kerns SL; Torke SJ; Benjamin JM; McGarry TJ
    J Biol Chem; 2007 Feb; 282(8):5514-21. PubMed ID: 17179155
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inter-origin cooperativity of geminin action establishes an all-or-none switch for replication origin licensing.
    Ode KL; Fujimoto K; Kubota Y; Takisawa H
    Genes Cells; 2011 Apr; 16(4):380-96. PubMed ID: 21426446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chk1 is activated at the midblastula transition in Xenopus laevis embryos independently of DNA content and the cyclin E/Cdk2 developmental timer.
    Adjerid N; Wroble BN; Sible JC
    Cell Cycle; 2008 Apr; 7(8):1112-6. PubMed ID: 18414041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.