BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32165690)

  • 1. Learning to find spatially reversed sounds.
    Bermejo F; Di Paolo EA; Gilberto LG; Lunati V; Barrios MV
    Sci Rep; 2020 Mar; 10(1):4562. PubMed ID: 32165690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaching to sounds in virtual reality: A multisensory-motor approach to promote adaptation to altered auditory cues.
    Valzolgher C; Verdelet G; Salemme R; Lombardi L; Gaveau V; Farné A; Pavani F
    Neuropsychologia; 2020 Dec; 149():107665. PubMed ID: 33130161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of head movements on sound localization in pseudo-phonically reversed hearing].
    Teshima T; Ohtsubo H; Nakamizo S
    Shinrigaku Kenkyu; 1982 Jun; 53(2):94-7. PubMed ID: 7131961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of dynamic-range compression on the spatial attributes of sounds in normal-hearing listeners.
    Wiggins IM; Seeber BU
    Ear Hear; 2012; 33(3):399-410. PubMed ID: 22246139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vestigial auriculomotor activity indicates the direction of auditory attention in humans.
    Strauss DJ; Corona-Strauss FI; Schroeer A; Flotho P; Hannemann R; Hackley SA
    Elife; 2020 Jul; 9():. PubMed ID: 32618268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between egocentric and allocentric spatial coding of sounds revealed by a multisensory learning paradigm.
    Rabini G; Altobelli E; Pavani F
    Sci Rep; 2019 May; 9(1):7892. PubMed ID: 31133688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning auditory space: generalization and long-term effects.
    Mendonça C; Campos G; Dias P; Santos JA
    PLoS One; 2013; 8(10):e77900. PubMed ID: 24167588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial hearing training in virtual reality with simulated asymmetric hearing loss.
    Valzolgher C; Capra S; Sum K; Finos L; Pavani F; Picinali L
    Sci Rep; 2024 Jan; 14(1):2469. PubMed ID: 38291126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity to Angular and Radial Source Movements as a Function of Acoustic Complexity in Normal and Impaired Hearing.
    Lundbeck M; Grimm G; Hohmann V; Laugesen S; Neher T
    Trends Hear; 2017; 21():2331216517717152. PubMed ID: 28675088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning to localise weakly-informative sound spectra with and without feedback.
    Zonooz B; Arani E; Opstal AJV
    Sci Rep; 2018 Dec; 8(1):17933. PubMed ID: 30560940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal factors influence sound-source segregation in localization behavior.
    van Bentum GC; van Wanrooij MM; van Opstal AJ
    J Neurophysiol; 2021 Feb; 125(2):556-567. PubMed ID: 33378250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adapting to altered auditory cues: Generalization from manual reaching to head pointing.
    Valzolgher C; Todeschini M; Verdelet G; Gatel J; Salemme R; Gaveau V; Truy E; Farnè A; Pavani F
    PLoS One; 2022; 17(4):e0263509. PubMed ID: 35421095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distortion and adaptation in underwater sound localization.
    Wells MJ; Ross HE
    Aviat Space Environ Med; 1980 Aug; 51(8):767-74. PubMed ID: 7417142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing of self-initiated sound motion in the human brain.
    Altmann CF; Yamasaki D; Song Y; Bucher B
    Brain Res; 2021 Jul; 1762():147433. PubMed ID: 33737062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of head movements on visual and auditory dominance.
    Easton RD
    Perception; 1983; 12(1):63-70. PubMed ID: 6646955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Hearing Difficulties in Reaching Space in Bilateral Cochlear Implant Children Improve With Head Movements.
    Coudert A; Gaveau V; Gatel J; Verdelet G; Salemme R; Farne A; Pavani F; Truy E
    Ear Hear; 2022; 43(1):192-205. PubMed ID: 34225320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relearning sound localization with new ears.
    Hofman PM; Van Riswick JG; Van Opstal AJ
    Nat Neurosci; 1998 Sep; 1(5):417-21. PubMed ID: 10196533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benefits of active listening during 3D sound localization.
    Gaveau V; Coudert A; Salemme R; Koun E; Desoche C; Truy E; Farnè A; Pavani F
    Exp Brain Res; 2022 Nov; 240(11):2817-2833. PubMed ID: 36071210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of head position on the spatial representation of acoustic targets.
    Goossens HH; van Opstal AJ
    J Neurophysiol; 1999 Jun; 81(6):2720-36. PubMed ID: 10368392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of auditory cortex in the spatial ventriloquism aftereffect.
    Zierul B; Röder B; Tempelmann C; Bruns P; Noesselt T
    Neuroimage; 2017 Nov; 162():257-268. PubMed ID: 28889003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.