BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32165690)

  • 21. Eye position and cross-sensory learning both contribute to prism adaptation of auditory space.
    Cui QN; Bachus L; Knoth E; O'Neill WE; Paige GD
    Prog Brain Res; 2008; 171():265-70. PubMed ID: 18718311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of head rotations on vertical plane sound localization.
    Perrett S; Noble W
    J Acoust Soc Am; 1997 Oct; 102(4):2325-32. PubMed ID: 9348691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Virtual auditory aperture passability.
    Riehm C; Chemero A; Silva PL; Shockley K
    Exp Brain Res; 2019 Jan; 237(1):191-200. PubMed ID: 30374783
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of sound duration on newborns' head orientation.
    Clarkson MG; Clifton RK; Morrongiello BA
    J Exp Child Psychol; 1985 Feb; 39(1):20-36. PubMed ID: 3989460
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Representation of Auditory Motion Directions and Sound Source Locations in the Human Planum Temporale.
    Battal C; Rezk M; Mattioni S; Vadlamudi J; Collignon O
    J Neurosci; 2019 Mar; 39(12):2208-2220. PubMed ID: 30651333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compression of auditory space during forward self-motion.
    Teramoto W; Sakamoto S; Furune F; Gyoba J; Suzuki Y
    PLoS One; 2012; 7(6):e39402. PubMed ID: 22768076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Absence of compensation for vestibular-evoked passive head rotations in human sound localization.
    Van Barneveld DC; Binkhorst F; Van Opstal AJ
    Eur J Neurosci; 2011 Oct; 34(7):1149-60. PubMed ID: 21895805
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The contribution of head movement to the externalization and internalization of sounds.
    Brimijoin WO; Boyd AW; Akeroyd MA
    PLoS One; 2013; 8(12):e83068. PubMed ID: 24312677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of duration and level on human sound localization.
    Vliegen J; Van Opstal AJ
    J Acoust Soc Am; 2004 Apr; 115(4):1705-13. PubMed ID: 15101649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distortions of auditory space during rapid head turns.
    Cooper J; Carlile S; Alais D
    Exp Brain Res; 2008 Nov; 191(2):209-19. PubMed ID: 18696058
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Localization of moving sounds by hemispherectomized subjects.
    Lessard N; Leporé F; Poirier P; Villemagne J; Lassonde M
    Behav Brain Res; 1999 Oct; 104(1-2):37-49. PubMed ID: 11125741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid head-related transfer function adaptation using a virtual auditory environment.
    Parseihian G; Katz BF
    J Acoust Soc Am; 2012 Apr; 131(4):2948-57. PubMed ID: 22501072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Task-dependent visual coding of sound position in visuospatial neglect patients.
    Pavani F; Farnè A; Làdavas E
    Neuroreport; 2003 Jan; 14(1):99-103. PubMed ID: 12544839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intercepting a sound without vision.
    Vercillo T; Tonelli A; Gori M
    PLoS One; 2017; 12(5):e0177407. PubMed ID: 28481939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of spatial auditory landmarks on ambulation.
    Karim AM; Rumalla K; King LA; Hullar TE
    Gait Posture; 2018 Feb; 60():171-174. PubMed ID: 29241100
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sound source localization with varying amount of visual information in virtual reality.
    Ahrens A; Lund KD; Marschall M; Dau T
    PLoS One; 2019; 14(3):e0214603. PubMed ID: 30925174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of aging and interaural delay on the detection of a break in the interaural correlation between two sounds.
    Li L; Huang J; Wu X; Qi JG; Schneider BA
    Ear Hear; 2009 Apr; 30(2):273-86. PubMed ID: 19194287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of spatial response coding on distractor processing: evidence from auditory spatial negative priming tasks with keypress, joystick, and head movement responses.
    Möller M; Mayr S; Buchner A
    Atten Percept Psychophys; 2015 Jan; 77(1):293-310. PubMed ID: 25214304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early stages of sensorimotor map acquisition: learning with free exploration, without active movement or global structure.
    van Vugt FT; Ostry DJ
    J Neurophysiol; 2019 Oct; 122(4):1708-1720. PubMed ID: 31433958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential Adaptation in Azimuth and Elevation to Acute Monaural Spatial Hearing after Training with Visual Feedback.
    Zonooz B; Van Opstal AJ
    eNeuro; 2019; 6(6):. PubMed ID: 31601632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.