These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 32165707)
1. Formation of complex hydrocarbon systems from methane at the upper mantle thermobaric conditions. Serovaiskii A; Kutcherov V Sci Rep; 2020 Mar; 10(1):4559. PubMed ID: 32165707 [TBL] [Abstract][Full Text] [Related]
2. Raman Spectroscopy Study on Chemical Transformations of Propane at High Temperatures and High Pressures. Kudryavtsev DA; Fedotenko TМ; Koemets EG; Khandarkhaeva SE; Kutcherov VG; Dubrovinsky LS Sci Rep; 2020 Jan; 10(1):1483. PubMed ID: 32001799 [TBL] [Abstract][Full Text] [Related]
3. Generation of methane in the Earth's mantle: in situ high pressure-temperature measurements of carbonate reduction. Scott HP; Hemley RJ; Mao HK; Herschbach DR; Fried LE; Howard WM; Bastea S Proc Natl Acad Sci U S A; 2004 Sep; 101(39):14023-6. PubMed ID: 15381767 [TBL] [Abstract][Full Text] [Related]
4. Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors. Lobanov SS; Chen PN; Chen XJ; Zha CS; Litasov KD; Mao HK; Goncharov AF Nat Commun; 2013; 4():2446. PubMed ID: 24026399 [TBL] [Abstract][Full Text] [Related]
5. In-situ abiogenic methane synthesis from diamond and graphite under geologically relevant conditions. Peña-Alvarez M; Brovarone AV; Donnelly ME; Wang M; Dalladay-Simpson P; Howie R; Gregoryanz E Nat Commun; 2021 Nov; 12(1):6387. PubMed ID: 34737292 [TBL] [Abstract][Full Text] [Related]
6. Diamond formation from methane hydrate under the internal conditions of giant icy planets. Kadobayashi H; Ohnishi S; Ohfuji H; Yamamoto Y; Muraoka M; Yoshida S; Hirao N; Kawaguchi-Imada S; Hirai H Sci Rep; 2021 Apr; 11(1):8165. PubMed ID: 33854182 [TBL] [Abstract][Full Text] [Related]
7. An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method. Nouranian S; Tschopp MA; Gwaltney SR; Baskes MI; Horstemeyer MF Phys Chem Chem Phys; 2014 Apr; 16(13):6233-49. PubMed ID: 24566869 [TBL] [Abstract][Full Text] [Related]
8. Chemical interaction of Fe and Al(2)O3 as a source of heterogeneity at the Earth's core-mantle boundary. Dubrovinsky L; Annersten H; Dubrovinskaia N; Westman F; Harryson H; Fabrichnaya O; Carlson S Nature; 2001 Aug; 412(6846):527-9. PubMed ID: 11484050 [TBL] [Abstract][Full Text] [Related]
9. Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of Earth's mantle. Dubrovinsky L; Dubrovinskaia N; Langenhorst F; Dobson D; Rubie D; Gessmann C; Abrikosov IA; Johansson B; Baykov VI; Vitos L; Le Bihan T; Crichton WA; Dmitriev V; Weber HP Nature; 2003 Mar; 422(6927):58-61. PubMed ID: 12621431 [TBL] [Abstract][Full Text] [Related]
10. Experimental and theoretical thermal equations of state of MgSiO3 post-perovskite at multi-megabar pressures. Sakai T; Dekura H; Hirao N Sci Rep; 2016 Mar; 6():22652. PubMed ID: 26948855 [TBL] [Abstract][Full Text] [Related]
11. Hydrocarbon nucleation and aerosol formation in Neptune's atmosphere. Moses JI; Allen M; Yung YL Icarus; 1992 Oct; 99(2):318-46. PubMed ID: 11538166 [TBL] [Abstract][Full Text] [Related]
12. Structural geology of the Earth's interior. Jordan TH Proc Natl Acad Sci U S A; 1979 Sep; 76(9):4192-200. PubMed ID: 16592703 [TBL] [Abstract][Full Text] [Related]
13. Water-Gas Shift Reaction Produces Formate at Extreme Pressures and Temperatures in Deep Earth Fluids. Stolte N; Yu J; Chen Z; Sverjensky DA; Pan D J Phys Chem Lett; 2021 May; 12(17):4292-4298. PubMed ID: 33928781 [TBL] [Abstract][Full Text] [Related]
14. Methane and Benzene in Drinking-Water Wells Overlying the Eagle Ford, Fayetteville, and Haynesville Shale Hydrocarbon Production Areas. McMahon PB; Barlow JRB; Engle MA; Belitz K; Ging PB; Hunt AG; Jurgens BC; Kharaka YK; Tollett RW; Kresse TM Environ Sci Technol; 2017 Jun; 51(12):6727-6734. PubMed ID: 28562061 [TBL] [Abstract][Full Text] [Related]
15. Stability of magnesiowustite in Earth's lower mantle. Lin JF; Heinz DL; Mao HK; Hemley RJ; Devine JM; Li J; Shen G Proc Natl Acad Sci U S A; 2003 Apr; 100(8):4405-8. PubMed ID: 12660368 [TBL] [Abstract][Full Text] [Related]
16. The lower pT limit of deep hydrocarbon synthesis by CaCO Mukhina E; Kolesnikov A; Kutcherov V Sci Rep; 2017 Jul; 7(1):5749. PubMed ID: 28720804 [TBL] [Abstract][Full Text] [Related]
17. Interfacial properties of hydrocarbon/water systems predicted by molecular dynamic simulations. Naeiji P; Woo TK; Alavi S; Varaminian F; Ohmura R J Chem Phys; 2019 Mar; 150(11):114703. PubMed ID: 30901995 [TBL] [Abstract][Full Text] [Related]
18. Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth's upper mantle. Mainprice D; Tommasi A; Couvy H; Cordier P; Frost DJ Nature; 2005 Feb; 433(7027):731-3. PubMed ID: 15716950 [TBL] [Abstract][Full Text] [Related]
19. Evidence for complex iron oxides in the deep mantle from FeNi(Cu) inclusions in superdeep diamond. Anzolini C; Marquardt K; Stagno V; Bindi L; Frost DJ; Pearson DG; Harris JW; Hemley RJ; Nestola F Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21088-21094. PubMed ID: 32817475 [TBL] [Abstract][Full Text] [Related]
20. Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth's upper mantle. Ohuchi T; Kawazoe T; Higo Y; Funakoshi K; Suzuki A; Kikegawa T; Irifune T Sci Adv; 2015 Oct; 1(9):e1500360. PubMed ID: 26601281 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]