These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32165712)

  • 1. Polymer Capsules with Tunable Shell Thickness Synthesized via Janus-to-core shell Transition of Biphasic Droplets Produced in a Microfluidic Flow-Focusing Device.
    Xu S; Nisisako T
    Sci Rep; 2020 Mar; 10(1):4549. PubMed ID: 32165712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant-Laden Janus Droplets with Tunable Morphologies and Enhanced Stability for Fabricating Lens-Shaped Polymeric Microparticles.
    Xu S; Nisisako T
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33383964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large ultrathin shelled drops produced via non-confined microfluidics.
    Chaurasia AS; Josephides DN; Sajjadi S
    Chemphyschem; 2015 Feb; 16(2):403-11. PubMed ID: 25382308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multicore-shell PNIPAm-co-PEGMa microcapsules for cell encapsulation.
    Trongsatitkul T; Budhlall BM
    Langmuir; 2011 Nov; 27(22):13468-80. PubMed ID: 21962146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High throughput production of microcapsules using microfluidics for self-healing of cementitious materials.
    Ribeiro de Souza L; Al-Tabbaa A
    Lab Chip; 2021 Nov; 21(23):4652-4659. PubMed ID: 34734612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles.
    Nisisako T; Torii T
    Lab Chip; 2008 Feb; 8(2):287-93. PubMed ID: 18231668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic conceived pH sensitive core-shell particles for dual drug delivery.
    Khan IU; Stolch L; Serra CA; Anton N; Akasov R; Vandamme TF
    Int J Pharm; 2015 Jan; 478(1):78-87. PubMed ID: 25307961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capillary-assisted fabrication of biconcave polymeric microlenses from microfluidic ternary emulsion droplets.
    Nisisako T; Ando T; Hatsuzawa T
    Small; 2014 Dec; 10(24):5116-25. PubMed ID: 25123596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid.
    Kim C; Chung S; Kim YE; Lee KS; Lee SH; Oh KW; Kang JY
    Lab Chip; 2011 Jan; 11(2):246-52. PubMed ID: 20967338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Coupling of Step Emulsification and Deterministic Lateral Displacement for Producing Satellite-Free Droplets and Particles.
    Ji G; Kanno Y; Nisisako T
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Fabrication of Core-Shell Microcapsules carrying Human Pluripotent Stem Cell Spheroids.
    Gwon K; Hong HJ; Gonzalez-Suarez AM; Stybayeva G; Revzin A
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34723935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designer polymer-based microcapsules made using microfluidics.
    Chen PW; Erb RM; Studart AR
    Langmuir; 2012 Jan; 28(1):144-52. PubMed ID: 22118302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monodisperse liquid-filled biodegradable microcapsules.
    Berkland C; Pollauf E; Varde N; Pack DW; Kim KK
    Pharm Res; 2007 May; 24(5):1007-13. PubMed ID: 17372691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lego-Inspired Glass Capillary Microfluidic Device: A Technique for Bespoke Microencapsulation of Phase Change Materials.
    Parvate S; Vladisavljević GT; Leister N; Spyrou A; Bolognesi G; Baiocco D; Zhang Z; Chattopadhyay S
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):17195-17210. PubMed ID: 36961881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmosis-Mediated Microfluidic Production of Submillimeter-Sized Capsules with an Ultrathin Shell for Cosmetic Applications.
    Hamonangan WM; Lee S; Choi YH; Li W; Tai M; Kim SH
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18159-18169. PubMed ID: 35426298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the microfluidic generation of double emulsion droplets with alginate shell.
    Huang L; Wu K; Cai S; Yu H; Liu D; Yuan W; Chen X; Ji H
    Colloids Surf B Biointerfaces; 2023 Feb; 222():113114. PubMed ID: 36577345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monodisperse Micro-Oil Droplets Stabilized by Polymerizable Phospholipid Coatings as Potential Drug Carriers.
    Park Y; Pham TA; Beigie C; Cabodi M; Cleveland RO; Nagy JO; Wong JY
    Langmuir; 2015 Sep; 31(36):9762-70. PubMed ID: 26303989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors.
    Nie Z; Xu S; Seo M; Lewis PC; Kumacheva E
    J Am Chem Soc; 2005 Jun; 127(22):8058-63. PubMed ID: 15926830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic fabrication of monodisperse microcapsules with gas cores.
    Yang SH; Song WL; Fan LL; Deng CF; Xie R; Wang W; Liu Z; Pan DW; Ju XJ; Chu LY
    Lab Chip; 2024 Jul; 24(14):3556-3567. PubMed ID: 38949110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile microfluidic production of composite polymer core-shell microcapsules and crescent-shaped microparticles.
    Ekanem EE; Zhang Z; Vladisavljević GT
    J Colloid Interface Sci; 2017 Jul; 498():387-394. PubMed ID: 28343136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.