These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32165712)

  • 21. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic Formation of Hydrogel Microcapsules with a Single Aqueous Core by Spontaneous Cross-Linking in Aqueous Two-Phase System Droplets.
    Watanabe T; Motohiro I; Ono T
    Langmuir; 2019 Feb; 35(6):2358-2367. PubMed ID: 30626189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oil core-polymer shell microcapsules prepared by internal phase separation from emulsion droplets. I. Characterization and release rates for microcapsules with polystyrene shells.
    Dowding PJ; Atkin R; Vincent B; Bouillot P
    Langmuir; 2004 Dec; 20(26):11374-9. PubMed ID: 15595759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic fabrication of monodisperse polylactide microcapsules with tunable structures through rapid precipitation.
    Watanabe T; Kimura Y; Ono T
    Langmuir; 2013 Nov; 29(46):14082-8. PubMed ID: 24164350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Continuous fabrication of core-shell aerogel microparticles using microfluidic flows.
    Teo N; Jin C; Kulkarni A; Jana SC
    J Colloid Interface Sci; 2020 Mar; 561():772-781. PubMed ID: 31761464
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interfacial Polymerization on Dynamic Complex Colloids: Creating Stabilized Janus Droplets.
    He Y; Savagatrup S; Zarzar LD; Swager TM
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7804-7811. PubMed ID: 28198607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A microfluidic platform for the synthesis of polymer and polymer-protein-based protocells.
    O'Callaghan JA; Kamat NP; Vargo KB; Chattaraj R; Lee D; Hammer DA
    Eur Phys J E Soft Matter; 2024 Jun; 47(6):37. PubMed ID: 38829453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generation of Ultra-Thin-Shell Microcapsules Using Osmolarity-Controlled Swelling Method.
    Guo J; Hou L; Hou J; Yu J; Hu Q
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32340189
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Millimeter-sized capsules prepared using liquid marbles: Encapsulation of ingredients with high efficiency and preparation of spherical core-shell capsules with highly uniform shell thickness using centrifugal force.
    Takei T; Yamasaki Y; Yuji Y; Sakoguchi S; Ohzuno Y; Hayase G; Yoshida M
    J Colloid Interface Sci; 2019 Feb; 536():414-423. PubMed ID: 30380441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic fabrication of polyethylene glycol microgel capsules with tailored properties for the delivery of biomolecules.
    Guerzoni LPB; Bohl J; Jans A; Rose JC; Koehler J; Kuehne AJC; De Laporte L
    Biomater Sci; 2017 Jul; 5(8):1549-1557. PubMed ID: 28604857
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Janus microgels produced from functional precursor polymers.
    Seiffert S; Romanowsky MB; Weitz DA
    Langmuir; 2010 Sep; 26(18):14842-7. PubMed ID: 20731338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of Core-Shell Particles by Interfacial Radical Polymerization Initiated by a Glucose Oxidase-Mediated Redox System.
    Shenoy R; Tibbitt MW; Anseth KS; Bowman CN
    Chem Mater; 2013 Mar; 25(5):761-767. PubMed ID: 23503321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Encapsulation of emulsion droplets by organo-silica shells.
    Zoldesi CI; Steegstra P; Imhof A
    J Colloid Interface Sci; 2007 Apr; 308(1):121-9. PubMed ID: 17240392
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Double-emulsion drops with ultra-thin shells for capsule templates.
    Kim SH; Kim JW; Cho JC; Weitz DA
    Lab Chip; 2011 Sep; 11(18):3162-6. PubMed ID: 21811710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system.
    Choi CH; Jung JH; Kim DW; Chung YM; Lee CS
    Lab Chip; 2008 Sep; 8(9):1544-51. PubMed ID: 18818811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer.
    Ye C; Chen A; Colombo P; Martinez C
    J R Soc Interface; 2010 Aug; 7 Suppl 4(Suppl 4):S461-73. PubMed ID: 20484226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-axial capillaries microfluidic device for synthesizing size- and morphology-controlled polymer core-polymer shell particles.
    Chang Z; Serra CA; Bouquey M; Prat L; Hadziioannou G
    Lab Chip; 2009 Oct; 9(20):3007-11. PubMed ID: 19789758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multichannel Multijunction Droplet Microfluidic Device to Synthesize Hydrogel Microcapsules with Different Core-Shell Structures and Adjustable Core Positions.
    Wu Q; Huang X; Liu R; Yang X; Xiao G; Jiang N; Weitz DA; Song Y
    Langmuir; 2024 Jan; 40(3):1950-1960. PubMed ID: 37991242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complex Emulsions by Extracting Water from Homogeneous Solutions Comprised of Aqueous Three-Phase Systems.
    Cui C; Zeng C; Wang C; Zhang L
    Langmuir; 2017 Nov; 33(44):12670-12680. PubMed ID: 29022717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microcapsules with a pH responsive polymer: influence of the encapsulated oil on the capsule morphology.
    Wagdare NA; Marcelis AT; Boom RM; van Rijn CJ
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):175-80. PubMed ID: 21764268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.