These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32166562)

  • 1. Organ Metallome Processed with Chemometric Methods Enable the Determination of Elements that May Serve as Markers of Exposure to Iron Oxide Nanoparticles in Male Rats.
    Rugiel M; Drozdz A; Matusiak K; Setkowicz Z; Klodowski K; Chwiej J
    Biol Trace Elem Res; 2020 Dec; 198(2):602-616. PubMed ID: 32166562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The elemental changes occurring in the rat liver after exposure to PEG-coated iron oxide nanoparticles: total reflection x-ray fluorescence (TXRF) spectroscopy study.
    Matusiak K; Skoczen A; Setkowicz Z; Kubala-Kukus A; Stabrawa I; Ciarach M; Janeczko K; Jung A; Chwiej J
    Nanotoxicology; 2017; 11(9-10):1225-1236. PubMed ID: 29183205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intravenously administered d-mannitol-coated maghemite nanoparticles cause elemental anomalies in selected rat organs.
    Matusiak K; Drozdz A; Setkowicz Z; Kubala-Kukus A; Stabrawa I; Ciarach M; Janeczko K; Horak D; Babic M; Chwiej J
    Metallomics; 2020 Nov; 12(11):1811-1821. PubMed ID: 33094772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low Doses of Polyethylene Glycol Coated Iron Oxide Nanoparticles Cause Significant Elemental Changes within Main Organs.
    Skoczeń A; Matusiak K; Setkowicz Z; Kubala-Kukuś A; Stabrawa I; Ciarach M; Janeczko K; Chwiej J
    Chem Res Toxicol; 2018 Sep; 31(9):876-884. PubMed ID: 30070467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurotoxicity of green- synthesized magnetic iron oxide nanoparticles in different brain areas of wistar rats.
    Fahmy HM; Aly EM; Mohamed FF; Noor NA; Elsayed AA
    Neurotoxicology; 2020 Mar; 77():80-93. PubMed ID: 31899250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of zinc oxide nanoparticles on the metallome in freshwater mussels.
    Gagné F; Turcotte P; Auclair J; Gagnon C
    Comp Biochem Physiol C Toxicol Pharmacol; 2013 Jun; 158(1):22-8. PubMed ID: 23570753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging.
    Briley-Saebo K; Bjørnerud A; Grant D; Ahlstrom H; Berg T; Kindberg GM
    Cell Tissue Res; 2004 Jun; 316(3):315-23. PubMed ID: 15103550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FTIR microspectroscopy revealed biochemical changes in liver and kidneys as a result of exposure to low dose of iron oxide nanoparticles.
    Drozdz A; Matusiak K; Setkowicz Z; Ciarach M; Janeczko K; Sandt C; Borondics F; Horak D; Babic M; Chwiej J
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 236():118355. PubMed ID: 32344375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elemental profiles of freshwater mussels treated with silver nanoparticles: A metallomic approach.
    Gagné F; Turcotte P; Pilote M; Auclair J; André C; Gagnon C
    Comp Biochem Physiol C Toxicol Pharmacol; 2016 Oct; 188():17-23. PubMed ID: 27211012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodistribution and Toxicity Assessment of Superparamagnetic Iron Oxide Nanoparticles In Vitro and In Vivo.
    Yu Q; Xiong XQ; Zhao L; Xu TT; Bi H; Fu R; Wang QH
    Curr Med Sci; 2018 Dec; 38(6):1096-1102. PubMed ID: 30536075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of a liver anticancer drug, sorafenib from its PVA/LDH- and PEG/LDH-coated iron oxide nanoparticles for drug delivery applications.
    Ebadi M; Bullo S; Buskara K; Hussein MZ; Fakurazi S; Pastorin G
    Sci Rep; 2020 Dec; 10(1):21521. PubMed ID: 33298980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeated oral dose toxicity of iron oxide nanoparticles: biochemical and histopathological alterations in different tissues of rats.
    Kumari M; Rajak S; Singh SP; Kumari SI; Kumar PU; Murty US; Mahboob M; Grover P; Rahman MF
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2149-59. PubMed ID: 22755032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative toxicity of silicon dioxide, silver and iron oxide nanoparticles after repeated oral administration to rats.
    Yun JW; Kim SH; You JR; Kim WH; Jang JJ; Min SK; Kim HC; Chung DH; Jeong J; Kang BC; Che JH
    J Appl Toxicol; 2015 Jun; 35(6):681-93. PubMed ID: 25752675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging the distribution of iron oxide nanoparticles in hypothermic perfused tissues.
    Ring HL; Gao Z; Sharma A; Han Z; Lee C; Brockbank KGM; Greene ED; Helke KL; Chen Z; Campbell LH; Weegman B; Davis M; Taylor M; Giwa S; Fahy GM; Wowk B; Pagotan R; Bischof JC; Garwood M
    Magn Reson Med; 2020 May; 83(5):1750-1759. PubMed ID: 31815324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical characterization and in vivo organ distribution of coated iron oxide nanoparticles.
    Sharma A; Cornejo C; Mihalic J; Geyh A; Bordelon DE; Korangath P; Westphal F; Gruettner C; Ivkov R
    Sci Rep; 2018 Mar; 8(1):4916. PubMed ID: 29559734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reliable protocol for colorimetric determination of iron oxide nanoparticle uptake by cells.
    Deda DK; Cardoso RM; Uchiyama MK; Pavani C; Toma SH; Baptista MS; Araki K
    Anal Bioanal Chem; 2017 Nov; 409(28):6663-6675. PubMed ID: 28918472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles in foods? A multiscale physiopathological investigation of iron oxide nanoparticle effects on rats after an acute oral exposure: Trace element biodistribution and cognitive capacities.
    Askri D; Ouni S; Galai S; Chovelon B; Arnaud J; Sturm N; Lehmann SG; Sakly M; Amara S; Sève M
    Food Chem Toxicol; 2019 May; 127():173-181. PubMed ID: 30878530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs.
    Dumková J; Smutná T; Vrlíková L; Le Coustumer P; Večeřa Z; Dočekal B; Mikuška P; Čapka L; Fictum P; Hampl A; Buchtová M
    Part Fibre Toxicol; 2017 Dec; 14(1):55. PubMed ID: 29268755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-course assessment of the aggregation and metabolization of magnetic nanoparticles.
    Rojas JM; Gavilán H; Del Dedo V; Lorente-Sorolla E; Sanz-Ortega L; da Silva GB; Costo R; Perez-Yagüe S; Talelli M; Marciello M; Morales MP; Barber DF; Gutiérrez L
    Acta Biomater; 2017 Aug; 58():181-195. PubMed ID: 28536061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ever-Evolving Identity of Magnetic Nanoparticles within Human Cells: The Interplay of Endosomal Confinement, Degradation, Storage, and Neocrystallization.
    Van de Walle A; Kolosnjaj-Tabi J; Lalatonne Y; Wilhelm C
    Acc Chem Res; 2020 Oct; 53(10):2212-2224. PubMed ID: 32935974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.