These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32166774)

  • 1. Mechanisms and individuality in chromium toxicity in humans.
    Pavesi T; Moreira JC
    J Appl Toxicol; 2020 Sep; 40(9):1183-1197. PubMed ID: 32166774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis.
    Chen QY; Murphy A; Sun H; Costa M
    Toxicol Appl Pharmacol; 2019 Aug; 377():114636. PubMed ID: 31228494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromium genotoxicity: A double-edged sword.
    Nickens KP; Patierno SR; Ceryak S
    Chem Biol Interact; 2010 Nov; 188(2):276-88. PubMed ID: 20430016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carcinogenicity of hexavalent chromium.
    Holmes AL; Wise SS; Wise JP
    Indian J Med Res; 2008 Oct; 128(4):353-72. PubMed ID: 19106434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromium-induced genotoxicity and apoptosis: relationship to chromium carcinogenesis (review).
    Singh J; Carlisle DL; Pritchard DE; Patierno SR
    Oncol Rep; 1998; 5(6):1307-18. PubMed ID: 9769362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic and epitranscriptomic mechanisms of chromium carcinogenesis.
    Wang Z; Yang C
    Adv Pharmacol; 2023; 96():241-265. PubMed ID: 36858774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms.
    O'Brien TJ; Ceryak S; Patierno SR
    Mutat Res; 2003 Dec; 533(1-2):3-36. PubMed ID: 14643411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromium exposure disrupts chromatin architecture upsetting the mechanisms that regulate transcription.
    Zablon HA; VonHandorf A; Puga A
    Exp Biol Med (Maywood); 2019 Jun; 244(9):752-757. PubMed ID: 30935235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000.
    Dayan AD; Paine AJ
    Hum Exp Toxicol; 2001 Sep; 20(9):439-51. PubMed ID: 11776406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of transcriptomic responses to hexavalent chromium exposure in lung cells supports a role of epigenetic mediators in carcinogenesis.
    Rager JE; Suh M; Chappell GA; Thompson CM; Proctor DM
    Toxicol Lett; 2019 May; 305():40-50. PubMed ID: 30690063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and cellular mechanisms of hexavalent chromium-induced lung cancer: an updated perspective.
    Urbano AM; Ferreira LM; Alpoim MC
    Curr Drug Metab; 2012 Mar; 13(3):284-305. PubMed ID: 22455553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromium(VI) enhances (+/-)-anti-7beta,8alpha-dihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene-induced cytotoxicity and mutagenicity in mammalian cells through its inhibitory effect on nucleotide excision repair.
    Hu W; Feng Z; Tang MS
    Biochemistry; 2004 Nov; 43(44):14282-9. PubMed ID: 15518579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexavalent Chromium (Cr(VI)) Down-Regulates Acetylation of Histone H4 at Lysine 16 through Induction of Stressor Protein Nupr1.
    Chen D; Kluz T; Fang L; Zhang X; Sun H; Jin C; Costa M
    PLoS One; 2016; 11(6):e0157317. PubMed ID: 27285315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolonged Particulate Hexavalent Chromium Exposure Suppresses Homologous Recombination Repair in Human Lung Cells.
    Browning CL; Qin Q; Kelly DF; Prakash R; Vanoli F; Jasin M; Wise JP
    Toxicol Sci; 2016 Sep; 153(1):70-8. PubMed ID: 27449664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium and genomic stability.
    Wise SS; Wise JP
    Mutat Res; 2012 May; 733(1-2):78-82. PubMed ID: 22192535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of particulate hexavalent chromium cytotoxicity and genotoxicity in human and leatherback sea turtle lung cells from a one environmental health perspective.
    Speer RM; Wise SS; Croom-Perez TJ; Aboueissa AM; Martin-Bras M; Barandiaran M; Bermúdez E; Wise JP
    Toxicol Appl Pharmacol; 2019 Aug; 376():70-81. PubMed ID: 31108106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogeochemical behaviour and toxicology of chromium in the soil-water-human nexus: A review.
    Mortada WI; El-Naggar A; Mosa A; Palansooriya KN; Yousaf B; Tang R; Wang S; Cai Y; Chang SX
    Chemosphere; 2023 Aug; 331():138804. PubMed ID: 37137390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term and long-term exposure to hexavalent chromium alters 53BP1 via H3K18ac and H3K27ac.
    Ren X; Xia B; Chen Z; Chen X; Wu D; Lu W; Luo N; Zhou L; Liu W; Yang X; Liu J
    Chemosphere; 2019 Aug; 229():284-294. PubMed ID: 31078885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homologous recombination repair signaling in chemical carcinogenesis: prolonged particulate hexavalent chromium exposure suppresses the Rad51 response in human lung cells.
    Qin Q; Xie H; Wise SS; Browning CL; Thompson KN; Holmes AL; Wise JP
    Toxicol Sci; 2014 Nov; 142(1):117-25. PubMed ID: 25173789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic reduction of chromium, as related to its carcinogenic properties.
    De Flora S; Serra D; Camoirano A; Zanacchi P
    Biol Trace Elem Res; 1989; 21():179-87. PubMed ID: 2484584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.