These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 32166806)
21. Enhanced efficacy of the engineered antimicrobial peptide WLBU2 via direct airway delivery in a murine model of Pseudomonas aeruginosa pneumonia. Chen C; Deslouches B; Montelaro RC; Di YP Clin Microbiol Infect; 2018 May; 24(5):547.e1-547.e8. PubMed ID: 28882728 [TBL] [Abstract][Full Text] [Related]
22. Designing potent antimicrobial peptides by disulphide linked dimerization and N-terminal lipidation to increase antimicrobial activity and membrane perturbation: Structural insights into lipopolysaccharide binding. Datta A; Kundu P; Bhunia A J Colloid Interface Sci; 2016 Jan; 461():335-345. PubMed ID: 26407061 [TBL] [Abstract][Full Text] [Related]
23. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
24. Combination of a pH-responsive peptide amphiphile and a conventional antibiotic in treating Gram-negative bacteria. Liao M; Gong H; Liu H; Shen K; Ge T; King S; Schweins R; McBain AJ; Hu X; Lu JR J Colloid Interface Sci; 2024 Apr; 659():397-412. PubMed ID: 38183806 [TBL] [Abstract][Full Text] [Related]
25. Neutron Reflectivity as a Tool for Physics-Based Studies of Model Bacterial Membranes. Barker RD; McKinley LE; Titmuss S Adv Exp Med Biol; 2016; 915():261-82. PubMed ID: 27193548 [TBL] [Abstract][Full Text] [Related]
26. NMR Structures and Interactions of Antimicrobial Peptides with Lipopolysaccharide: Connecting Structures to Functions. Bhattacharjya S Curr Top Med Chem; 2016; 16(1):4-15. PubMed ID: 26139110 [TBL] [Abstract][Full Text] [Related]
27. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria. Ebbensgaard A; Mordhorst H; Overgaard MT; Nielsen CG; Aarestrup FM; Hansen EB PLoS One; 2015; 10(12):e0144611. PubMed ID: 26656394 [TBL] [Abstract][Full Text] [Related]
28. Outer membrane protein I of Pseudomonas aeruginosa is a target of cationic antimicrobial peptide/protein. Lin YM; Wu SJ; Chang TW; Wang CF; Suen CS; Hwang MJ; Chang MD; Chen YT; Liao YD J Biol Chem; 2010 Mar; 285(12):8985-94. PubMed ID: 20100832 [TBL] [Abstract][Full Text] [Related]
29. Novel cationic peptide TP359 down-regulates the expression of outer membrane biogenesis genes in Pseudomonas aeruginosa: a potential TP359 anti-microbial mechanism. Dosunmu EF; Chaudhari AA; Bawage S; Bakeer MK; Owen DR; Singh SR; Dennis VA; Pillai SR BMC Microbiol; 2016 Aug; 16(1):192. PubMed ID: 27549081 [TBL] [Abstract][Full Text] [Related]
30. Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. Manzini MC; Perez KR; Riske KA; Bozelli JC; Santos TL; da Silva MA; Saraiva GK; Politi MJ; Valente AP; Almeida FC; Chaimovich H; Rodrigues MA; Bemquerer MP; Schreier S; Cuccovia IM Biochim Biophys Acta; 2014 Jul; 1838(7):1985-99. PubMed ID: 24743023 [TBL] [Abstract][Full Text] [Related]
31. Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. Zhang L; Dhillon P; Yan H; Farmer S; Hancock RE Antimicrob Agents Chemother; 2000 Dec; 44(12):3317-21. PubMed ID: 11083634 [TBL] [Abstract][Full Text] [Related]
32. Antimicrobial Peptide Potency is Facilitated by Greater Conformational Flexibility when Binding to Gram-negative Bacterial Inner Membranes. Amos ST; Vermeer LS; Ferguson PM; Kozlowska J; Davy M; Bui TT; Drake AF; Lorenz CD; Mason AJ Sci Rep; 2016 Nov; 6():37639. PubMed ID: 27874065 [TBL] [Abstract][Full Text] [Related]
34. Probing the Functional Interaction Interface of Lipopolysaccharide and Antimicrobial Peptides: A Solution-State NMR Perspective. Biswas K; Bhunia A Methods Mol Biol; 2022; 2548():211-231. PubMed ID: 36151500 [TBL] [Abstract][Full Text] [Related]
35. Interaction of polyphemusin I and structural analogs with bacterial membranes, lipopolysaccharide, and lipid monolayers. Zhang L; Scott MG; Yan H; Mayer LD; Hancock RE Biochemistry; 2000 Nov; 39(47):14504-14. PubMed ID: 11087404 [TBL] [Abstract][Full Text] [Related]
36. Amphiphilic poly(phenyleneethynylene)s can mimic antimicrobial peptide membrane disordering effect by membrane insertion. Ishitsuka Y; Arnt L; Majewski J; Frey S; Ratajczek M; Kjaer K; Tew GN; Lee KY J Am Chem Soc; 2006 Oct; 128(40):13123-9. PubMed ID: 17017792 [TBL] [Abstract][Full Text] [Related]
38. Structural Disruptions of the Outer Membranes of Gram-Negative Bacteria by Rationally Designed Amphiphilic Antimicrobial Peptides. Gong H; Hu X; Liao M; Fa K; Ciumac D; Clifton LA; Sani MA; King SM; Maestro A; Separovic F; Waigh TA; Xu H; McBain AJ; Lu JR ACS Appl Mater Interfaces; 2021 Apr; 13(14):16062-16074. PubMed ID: 33797891 [TBL] [Abstract][Full Text] [Related]
39. Spectroscopic investigations of the binding mechanisms between antimicrobial peptides and membrane models of Pseudomonas aeruginosa and Klebsiella pneumoniae. Chai H; Allen WE; Hicks RP Bioorg Med Chem; 2014 Aug; 22(15):4210-22. PubMed ID: 24931276 [TBL] [Abstract][Full Text] [Related]