These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 32166912)
1. Bio-Inspired Isoalloxazine Redox Moieties for Rechargeable Aqueous Zinc-Ion Batteries. Cheng L; Liang Y; Zhu Q; Yu D; Chen M; Liang J; Wang H Chem Asian J; 2020 Apr; 15(8):1290-1295. PubMed ID: 32166912 [TBL] [Abstract][Full Text] [Related]
2. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage. Kwon G; Ko Y; Kim Y; Kim K; Kang K Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126 [TBL] [Abstract][Full Text] [Related]
3. 2,3-diaminophenazine as a high-rate rechargeable aqueous zinc-ion batteries cathode. Liang J; Tang M; Cheng L; Zhu Q; Ji R; Liu X; Zhang Q; Wang H; Liu Z J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1262-1268. PubMed ID: 34571310 [TBL] [Abstract][Full Text] [Related]
4. An Anti-Aromatic Covalent Organic Framework Cathode with Dual-Redox Centers for Rechargeable Aqueous Zinc Batteries. Lin Z; Lin L; Zhu J; Wu W; Yang X; Sun X ACS Appl Mater Interfaces; 2022 Aug; 14(34):38689-38695. PubMed ID: 35975747 [TBL] [Abstract][Full Text] [Related]
5. Recycling of Zinc-Carbon Batteries into MnO/ZnO/C to Fabricate Sustainable Cathodes for Rechargeable Zinc-Ion Batteries. Shangguan E; Wang L; Wang Y; Li L; Chen M; Qi J; Wu C; Wang M; Li Q; Gao S; Li J ChemSusChem; 2022 Aug; 15(15):e202200720. PubMed ID: 35592892 [TBL] [Abstract][Full Text] [Related]
7. Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries. Kumankuma-Sarpong J; Tang S; Guo W; Fu Y ACS Appl Mater Interfaces; 2021 Jan; 13(3):4084-4092. PubMed ID: 33459008 [TBL] [Abstract][Full Text] [Related]
8. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Zhang N; Cheng F; Liu J; Wang L; Long X; Liu X; Li F; Chen J Nat Commun; 2017 Sep; 8(1):405. PubMed ID: 28864823 [TBL] [Abstract][Full Text] [Related]
9. Rechargeable Aqueous Aluminum Organic Batteries. Chen J; Zhu Q; Jiang L; Liu R; Yang Y; Tang M; Wang J; Wang H; Guo L Angew Chem Int Ed Engl; 2021 Mar; 60(11):5794-5799. PubMed ID: 33314518 [TBL] [Abstract][Full Text] [Related]
10. Engineering Low-Cost Organic Cathode for Aqueous Rechargeable Battery and Demonstrating the Proton Intercalation Mechanism for Pyrazine Energy Storage Unit. Niu S; Wang Y; Zhang J; Wang Y; Tian Y; Ju N; Wang H; Zhao S; Zhang X; Zhang W; Li C; Sun HB Small; 2024 May; 20(21):e2309022. PubMed ID: 38084449 [TBL] [Abstract][Full Text] [Related]
11. Flexible Electron-Rich Ion Channels Enable Ultrafast and Stable Aqueous Zinc-Ion Storage. Cheng L; Zhu Q; Liang J; Tang M; Yang Y; Wang S; Ji P; Wang G; Chen W; Zhang X; Wang H ACS Appl Mater Interfaces; 2021 Nov; 13(45):54096-54105. PubMed ID: 34749501 [TBL] [Abstract][Full Text] [Related]
12. Developing Polymer Cathode Material for the Chloride Ion Battery. Zhao X; Zhao Z; Yang M; Xia H; Yu T; Shen X ACS Appl Mater Interfaces; 2017 Jan; 9(3):2535-2540. PubMed ID: 28044442 [TBL] [Abstract][Full Text] [Related]
13. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
14. Graphene Oxide Wrapped CuV Liu Y; Li Q; Ma K; Yang G; Wang C ACS Nano; 2019 Oct; 13(10):12081-12089. PubMed ID: 31553172 [TBL] [Abstract][Full Text] [Related]
15. A Long-Cycle-Life Self-Doped Polyaniline Cathode for Rechargeable Aqueous Zinc Batteries. Shi HY; Ye YJ; Liu K; Song Y; Sun X Angew Chem Int Ed Engl; 2018 Dec; 57(50):16359-16363. PubMed ID: 30307094 [TBL] [Abstract][Full Text] [Related]
16. A High-Energy Tellurium Redox-Amphoteric Conversion Cathode Chemistry for Aqueous Zinc Batteries. Du J; Zhao Y; Chu X; Wang G; Neumann C; Xu H; Li X; Löffler M; Lu Q; Zhang J; Li D; Zou J; Mikhailova D; Turchanin A; Feng X; Yu M Adv Mater; 2024 May; 36(19):e2313621. PubMed ID: 38316395 [TBL] [Abstract][Full Text] [Related]
17. Revealing Hydrogen Bond Effect in Rechargeable Aqueous Zinc-Organic Batteries. Guo J; Du JY; Liu WQ; Huang G; Zhang XB Angew Chem Int Ed Engl; 2024 Jul; 63(29):e202406465. PubMed ID: 38705847 [TBL] [Abstract][Full Text] [Related]
18. Multi-Electron Reactions Enabled by Anion-Based Redox Chemistry for High-Energy Multivalent Rechargeable Batteries. Li Z; Vinayan BP; Jankowski P; Njel C; Roy A; Vegge T; Maibach J; Lastra JMG; Fichtner M; Zhao-Karger Z Angew Chem Int Ed Engl; 2020 Jul; 59(28):11483-11490. PubMed ID: 32220137 [TBL] [Abstract][Full Text] [Related]
19. Reversible Oxygen Redox Chemistry in Aqueous Zinc-Ion Batteries. Wan F; Zhang Y; Zhang L; Liu D; Wang C; Song L; Niu Z; Chen J Angew Chem Int Ed Engl; 2019 May; 58(21):7062-7067. PubMed ID: 30893503 [TBL] [Abstract][Full Text] [Related]
20. Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance. Wang F; Yu F; Wang X; Chang Z; Fu L; Zhu Y; Wen Z; Wu Y; Huang W ACS Appl Mater Interfaces; 2016 Apr; 8(14):9022-9. PubMed ID: 26716878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]