These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32167097)

  • 1. Do defects in PAHs promote catalytic activity in space? Stone-Wales pyrene as a test case.
    Campisi D; Candian A
    Phys Chem Chem Phys; 2020 Mar; 22(12):6738-6748. PubMed ID: 32167097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogenated polycyclic aromatic hydrocarbons (H
    Ferullo RM; Zubieta CE; Belelli PG
    Phys Chem Chem Phys; 2019 Jun; 21(22):12012-12020. PubMed ID: 31134985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrene: hydrogenation, hydrogen evolution, and π-band model.
    Rasmussen JA; Henkelman G; Hammer B
    J Chem Phys; 2011 Apr; 134(16):164703. PubMed ID: 21528977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lubrication of Stone-Wales transformations in graphene by hydrogen and hydroxyl functional groups.
    Nascimento AJ; Nunes RW
    Nanotechnology; 2013 Nov; 24(43):435707. PubMed ID: 24107511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic excited state paths of Stone-Wales rearrangement in pyrene: roles of conical intersections.
    Yamazaki K; Niitsu N; Nakamura K; Kanno M; Kono H
    J Phys Chem A; 2012 Nov; 116(46):11441-50. PubMed ID: 22994422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT study of ozone dissociation on BC₃ graphene with Stone-Wales defects.
    Peyghan AA; Moradi M
    J Mol Model; 2014 Jan; 20(1):2071. PubMed ID: 24452908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation.
    Ali S; Fu Liu T; Lian Z; Li B; Sheng Su D
    Phys Chem Chem Phys; 2017 Aug; 19(33):22344-22354. PubMed ID: 28805223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MP2 Study of Physisorption of Molecular Hydrogen onto Defective Nanotubes: Cooperative Effect in Stone-Wales Defects.
    Lugo G; Cuesta IG; Sánchez Marín J; Sánchez de Merás A
    J Phys Chem A; 2016 Jul; 120(27):4951-60. PubMed ID: 27045203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ni adsorption on Stone-Wales defect sites in single-wall carbon nanotubes.
    Yang SH; Shin WH; Kang JK
    J Chem Phys; 2006 Aug; 125(8):084705. PubMed ID: 16965037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalization of the pristine and stone-wales defected BC3 graphenes with pyrene.
    Peyghan AA; Noei M; Bagheri Z
    J Mol Model; 2014 Dec; 20(12):2539. PubMed ID: 25503700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications.
    Allamandola LJ; Tielens AG; Barker JR
    Astrophys J Suppl Ser; 1989 Dec; 71():733-75. PubMed ID: 11542189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the chemical functionalization of single-walled carbon nanotubes with multiple carbon ad-dimer defects.
    Wang DL; Xu HL; Su ZM; Muhammad S; Hou DY
    Chemphyschem; 2012 Apr; 13(5):1232-9. PubMed ID: 22302701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum chemical elucidation of the mechanism for hydrogenation of TiO2 anatase crystals.
    Raghunath P; Huang WF; Lin MC
    J Chem Phys; 2013 Apr; 138(15):154705. PubMed ID: 23614434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociation and multiple ionization energies for five polycyclic aromatic hydrocarbon molecules.
    Holm AI; Johansson HA; Cederquist H; Zettergren H
    J Chem Phys; 2011 Jan; 134(4):044301. PubMed ID: 21280719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boron doped defective graphene as a potential anode material for Li-ion batteries.
    Hardikar RP; Das D; Han SS; Lee KR; Singh AK
    Phys Chem Chem Phys; 2014 Aug; 16(31):16502-8. PubMed ID: 24986702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the importance of edge-structure in the loss of H/H
    Castillo SR; Simon A; Joblin C
    Int J Mass Spectrom; 2018 Jun; 429():189-197. PubMed ID: 30186034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reactivity of defects at the sidewalls of single-walled carbon nanotubes: the Stone-Wales defect.
    Bettinger HF
    J Phys Chem B; 2005 Apr; 109(15):6922-4. PubMed ID: 16851780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the validity of empirical potentials for simulating radiation damage in graphite: a benchmark.
    Latham CD; McKenna AJ; Trevethan TP; Heggie MI; Rayson MJ; Briddon PR
    J Phys Condens Matter; 2015 Aug; 27(31):316301. PubMed ID: 26202454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1,3-Dipolar cycloadditions of Stone-Wales defective single-walled carbon nanotubes: A theoretical study.
    Yang T; Zhao X; Nagase S
    J Comput Chem; 2013 Oct; 34(26):2223-32. PubMed ID: 23832655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption and Diffusion of Lithium and Sodium on Defective Rhenium Disulfide: A First Principles Study.
    Mukherjee S; Banwait A; Grixti S; Koratkar N; Singh CV
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5373-5384. PubMed ID: 29350901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.