These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 32167135)

  • 41. Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment.
    Klein CL; Rovelli G; Springer W; Schall C; Gasser T; Kahle PJ
    J Neurochem; 2009 Nov; 111(3):703-15. PubMed ID: 19712061
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ROCO kinase activity is controlled by internal GTPase function.
    Weiss B
    Sci Signal; 2008 Jun; 1(23):pe27. PubMed ID: 18544747
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase.
    Gotthardt K; Weyand M; Kortholt A; Van Haastert PJ; Wittinghofer A
    EMBO J; 2008 Aug; 27(16):2239-49. PubMed ID: 18650931
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of LRRK2 accessory repeat domains: prediction of repeat length, number and sites of Parkinson's disease mutations.
    Mills RD; Mulhern TD; Cheng HC; Culvenor JG
    Biochem Soc Trans; 2012 Oct; 40(5):1086-9. PubMed ID: 22988870
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular Insights and Functional Implication of LRRK2 Dimerization.
    Civiero L; Russo I; Bubacco L; Greggio E
    Adv Neurobiol; 2017; 14():107-121. PubMed ID: 28353281
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural basis for Parkinson's disease-linked LRRK2's binding to microtubules.
    Snead DM; Matyszewski M; Dickey AM; Lin YX; Leschziner AE; Reck-Peterson SL
    Nat Struct Mol Biol; 2022 Dec; 29(12):1196-1207. PubMed ID: 36510024
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystal structure of the WD40 domain dimer of LRRK2.
    Zhang P; Fan Y; Ru H; Wang L; Magupalli VG; Taylor SS; Alessi DR; Wu H
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1579-1584. PubMed ID: 30635421
    [TBL] [Abstract][Full Text] [Related]  

  • 48. LRRK2: from kinase to GTPase to microtubules and back.
    Blanca Ramírez M; Lara Ordóñez AJ; Fdez E; Hilfiker S
    Biochem Soc Trans; 2017 Feb; 45(1):141-146. PubMed ID: 28202667
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The biology and pathobiology of LRRK2: implications for Parkinson's disease.
    Moore DJ
    Parkinsonism Relat Disord; 2008; 14 Suppl 2():S92-8. PubMed ID: 18602856
    [TBL] [Abstract][Full Text] [Related]  

  • 50. GTP binding regulates cellular localization of Parkinson's disease-associated LRRK2.
    Blanca Ramírez M; Lara Ordóñez AJ; Fdez E; Madero-Pérez J; Gonnelli A; Drouyer M; Chartier-Harlin MC; Taymans JM; Bubacco L; Greggio E; Hilfiker S
    Hum Mol Genet; 2017 Jul; 26(14):2747-2767. PubMed ID: 28453723
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2.
    Vancraenenbroeck R; Lobbestael E; Weeks SD; Strelkov SV; Baekelandt V; Taymans JM; De Maeyer M
    Biochim Biophys Acta; 2012 Mar; 1824(3):450-60. PubMed ID: 22251894
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel LRR-ROC Motif That Links the N- and C-terminal Domains in LRRK2 Undergoes an Order-Disorder Transition Upon Activation.
    Weng JH; Trilling CR; Kaila Sharma P; Störmer E; Wu J; Herberg FW; Taylor SS
    J Mol Biol; 2023 Jun; 435(12):167999. PubMed ID: 36764356
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Autophosphorylation in the leucine-rich repeat kinase 2 (LRRK2) GTPase domain modifies kinase and GTP-binding activities.
    Webber PJ; Smith AD; Sen S; Renfrow MB; Mobley JA; West AB
    J Mol Biol; 2011 Sep; 412(1):94-110. PubMed ID: 21806997
    [TBL] [Abstract][Full Text] [Related]  

  • 54. LRRK 2 gene mutations in the pathophysiology of the ROCO domain and therapeutic targets for Parkinson's disease: a review.
    Chen ML; Wu RM
    J Biomed Sci; 2018 Jun; 25(1):52. PubMed ID: 29903014
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity.
    West AB; Moore DJ; Choi C; Andrabi SA; Li X; Dikeman D; Biskup S; Zhang Z; Lim KL; Dawson VL; Dawson TM
    Hum Mol Genet; 2007 Jan; 16(2):223-32. PubMed ID: 17200152
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel LRRK2 GTP-binding inhibitors reduced degeneration in Parkinson's disease cell and mouse models.
    Li T; Yang D; Zhong S; Thomas JM; Xue F; Liu J; Kong L; Voulalas P; Hassan HE; Park JS; MacKerell AD; Smith WW
    Hum Mol Genet; 2014 Dec; 23(23):6212-22. PubMed ID: 24993787
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Roco Proteins and the Parkinson's Disease-Associated LRRK2.
    Liao J; Hoang QQ
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30562929
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanisms of LRRK2-dependent neurodegeneration: role of enzymatic activity and protein aggregation.
    Islam MS; Moore DJ
    Biochem Soc Trans; 2017 Feb; 45(1):163-172. PubMed ID: 28202670
    [TBL] [Abstract][Full Text] [Related]  

  • 59. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease.
    Ito G; Okai T; Fujino G; Takeda K; Ichijo H; Katada T; Iwatsubo T
    Biochemistry; 2007 Feb; 46(5):1380-8. PubMed ID: 17260967
    [TBL] [Abstract][Full Text] [Related]  

  • 60. LRRK2 and Parkinson's Disease: From Lack of Structure to Gain of Function.
    Blanca Ramírez M; Madero-Perez J; Rivero-Rios P; Martinez-Salvador M; Lara Ordonez AJ; Fernandez B; Fdez E; Hilfiker S
    Curr Protein Pept Sci; 2017; 18(7):677-686. PubMed ID: 26965688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.