These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 32167296)
1. Exploration of Free Energy Surfaces Across a Membrane Channel Using Metadynamics and Umbrella Sampling. Golla VK; Prajapati JD; Joshi M; Kleinekathöfer U J Chem Theory Comput; 2020 Apr; 16(4):2751-2765. PubMed ID: 32167296 [TBL] [Abstract][Full Text] [Related]
2. Improved Sampling and Free Energy Estimates for Antibiotic Permeation through Bacterial Porins. Acharya A; Prajapati JD; Kleinekathöfer U J Chem Theory Comput; 2021 Jul; 17(7):4564-4577. PubMed ID: 34138557 [TBL] [Abstract][Full Text] [Related]
3. Permeation of Fosfomycin through the Phosphate-Specific Channels OprP and OprO of Golla VK; Piselli C; Kleinekathöfer U; Benz R J Phys Chem B; 2022 Feb; 126(7):1388-1403. PubMed ID: 35138863 [No Abstract] [Full Text] [Related]
4. Fosmidomycin transport through the phosphate-specific porins OprO and OprP of Pseudomonas aeruginosa. Piselli C; Benz R Mol Microbiol; 2021 Jul; 116(1):97-108. PubMed ID: 33561903 [TBL] [Abstract][Full Text] [Related]
5. Converging PMF Calculations of Antibiotic Permeation across an Outer Membrane Porin with Subkilocalorie per Mole Accuracy. Lapierre J; Hub JS J Chem Inf Model; 2023 Aug; 63(16):5319-5330. PubMed ID: 37560945 [TBL] [Abstract][Full Text] [Related]
6. Transition-Tempered Metadynamics Is a Promising Tool for Studying the Permeation of Drug-like Molecules through Membranes. Sun R; Dama JF; Tan JS; Rose JP; Voth GA J Chem Theory Comput; 2016 Oct; 12(10):5157-5169. PubMed ID: 27598403 [TBL] [Abstract][Full Text] [Related]
7. Fosfomycin Permeation through the Outer Membrane Porin OmpF. Golla VK; Sans-Serramitjana E; Pothula KR; Benier L; Bafna JA; Winterhalter M; Kleinekathöfer U Biophys J; 2019 Jan; 116(2):258-269. PubMed ID: 30616836 [TBL] [Abstract][Full Text] [Related]
8. Bias-Exchange Metadynamics Simulations: An Efficient Strategy for the Analysis of Conduction and Selectivity in Ion Channels. Domene C; Barbini P; Furini S J Chem Theory Comput; 2015 Apr; 11(4):1896-906. PubMed ID: 26574394 [TBL] [Abstract][Full Text] [Related]
9. Exploring the Free Energy Landscape of Solutes Embedded in Lipid Bilayers. Jämbeck JP; Lyubartsev AP J Phys Chem Lett; 2013 Jun; 4(11):1781-7. PubMed ID: 26283109 [TBL] [Abstract][Full Text] [Related]
10. Movement of Arginine through OprD: The Energetics of Permeation and the Role of Lipopolysaccharide in Directing Arginine to the Protein. Samsudin F; Khalid S J Phys Chem B; 2019 Apr; 123(13):2824-2832. PubMed ID: 30839215 [TBL] [Abstract][Full Text] [Related]
11. Brownian Dynamics Approach Including Explicit Atoms for Studying Ion Permeation and Substrate Translocation across Nanopores. Solano CJF; Prajapati JD; Pothula KR; Kleinekathöfer U J Chem Theory Comput; 2018 Dec; 14(12):6701-6713. PubMed ID: 30407818 [TBL] [Abstract][Full Text] [Related]
12. Calculating the free energy of transfer of small solutes into a model lipid membrane: Comparison between metadynamics and umbrella sampling. Bochicchio D; Panizon E; Ferrando R; Monticelli L; Rossi G J Chem Phys; 2015 Oct; 143(14):144108. PubMed ID: 26472364 [TBL] [Abstract][Full Text] [Related]
13. Structure, Dynamics, and Substrate Specificity of the OprO Porin from Pseudomonas aeruginosa. Modi N; Ganguly S; Bárcena-Uribarri I; Benz R; van den Berg B; Kleinekathöfer U Biophys J; 2015 Oct; 109(7):1429-38. PubMed ID: 26445443 [TBL] [Abstract][Full Text] [Related]
14. Exploration of high dimensional free energy landscapes by a combination of temperature-accelerated sliced sampling and parallel biasing. Gupta A; Verma S; Javed R; Sudhakar S; Srivastava S; Nair NN J Comput Chem; 2022 Jun; 43(17):1186-1200. PubMed ID: 35510789 [TBL] [Abstract][Full Text] [Related]
15. Selectivity of a Singly Permeating Ion in Nonselective NaK Channel: Combined QM and MD Based Investigations. Sadhu B; Sundararajan M; Bandyopadhyay T J Phys Chem B; 2015 Oct; 119(40):12783-97. PubMed ID: 26377764 [TBL] [Abstract][Full Text] [Related]
16. Ion permeation in the NanC porin from Escherichia coli: free energy calculations along pathways identified by coarse-grain simulations. Dreyer J; Strodel P; Ippoliti E; Finnerty J; Eisenberg B; Carloni P J Phys Chem B; 2013 Oct; 117(43):13534-42. PubMed ID: 24147565 [TBL] [Abstract][Full Text] [Related]
17. Role of the central arginine R133 toward the ion selectivity of the phosphate specific channel OprP: effects of charge and solvation. Modi N; Bárcena-Uribarri I; Bains M; Benz R; Hancock RE; Kleinekathöfer U Biochemistry; 2013 Aug; 52(33):5522-32. PubMed ID: 23875754 [TBL] [Abstract][Full Text] [Related]
18. Simulating Protein Mediated Hydrolysis of ATP and Other Nucleoside Triphosphates by Combining QM/MM Molecular Dynamics with Advances in Metadynamics. Sun R; Sode O; Dama JF; Voth GA J Chem Theory Comput; 2017 May; 13(5):2332-2341. PubMed ID: 28345907 [TBL] [Abstract][Full Text] [Related]
19. Free Energy Calculations of Membrane Permeation: Challenges Due to Strong Headgroup-Solute Interactions. Pokhrel N; Maibaum L J Chem Theory Comput; 2018 Mar; 14(3):1762-1771. PubMed ID: 29406707 [TBL] [Abstract][Full Text] [Related]
20. Computational studies of transport in ion channels using metadynamics. Furini S; Domene C Biochim Biophys Acta; 2016 Jul; 1858(7 Pt B):1733-40. PubMed ID: 26891818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]