BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32167304)

  • 1. Self-Fibrillating Cellulose Fibers: Rapid In Situ Nanofibrillation to Prepare Strong, Transparent, and Gas Barrier Nanopapers.
    Gorur YC; Larsson PA; Wågberg L
    Biomacromolecules; 2020 Apr; 21(4):1480-1488. PubMed ID: 32167304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-based films/nanopapers from lignocellulosic wastes for production of added-value micro-/nanomaterials.
    Guimarães BMR; Scatolino MV; Martins MA; Ferreira SR; Mendes LM; Lima JT; Junior MG; Tonoli GHD
    Environ Sci Pollut Res Int; 2022 Feb; 29(6):8665-8683. PubMed ID: 34490567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Characterization of Self-Fibrillating Cellulose Fibers and Their Use in Tunable Filters.
    Gorur YC; Reid MS; Montanari C; Larsson PT; Larsson PA; Wågberg L
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32467-32478. PubMed ID: 34106700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fast method to prepare mechanically strong and water resistant lignocellulosic nanopapers.
    Sethi J; Visanko M; Österberg M; Sirviö JA
    Carbohydr Polym; 2019 Jan; 203():148-156. PubMed ID: 30318198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-inspired multiproperty materials: strong, self-healing, and transparent artificial wood nanostructures.
    Merindol R; Diabang S; Felix O; Roland T; Gauthier C; Decher G
    ACS Nano; 2015 Feb; 9(2):1127-36. PubMed ID: 25590696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction to "Self-Fibrillating Cellulose Fibers: Rapid In Situ Nanofibrillation to Prepare Strong, Transparent, and Gas Barrier Nanopapers".
    Gorur YC; Larsson PA; Wågberg L
    Biomacromolecules; 2020 Aug; 21(8):3479. PubMed ID: 32672955
    [No Abstract]   [Full Text] [Related]  

  • 7. Eco-Friendly Cellulose Nanofibrils Designed by Nature: Effects from Preserving Native State.
    Yang X; Reid MS; Olsén P; Berglund LA
    ACS Nano; 2020 Jan; 14(1):724-735. PubMed ID: 31886646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of cellulose and lignocellulose nanopapers prepared from hard wood pulps: Morphological, structural and barrier properties.
    Djafari Petroudy SR; Rahmani N; Rasooly Garmaroody E; Rudi H; Ramezani O
    Int J Biol Macromol; 2019 Aug; 135():512-520. PubMed ID: 31152834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanically strong nanopapers based on lignin containing cellulose micro- and nano-hybrid fibrils: Lignin content-fibrils morphology-strengthening mechanism.
    Dong J; Zeng J; Li P; Li J; Wang B; Xu J; Gao W; Chen K
    Carbohydr Polym; 2023 Jul; 311():120753. PubMed ID: 37028856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-resistant hybrid cellulose nanofibril films prepared by charge reversal on gibbsite nanoclays.
    Sethi J; Wågberg L; Larsson PA
    Carbohydr Polym; 2022 Nov; 295():119867. PubMed ID: 35989010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites.
    Wu CN; Saito T; Fujisawa S; Fukuzumi H; Isogai A
    Biomacromolecules; 2012 Jun; 13(6):1927-32. PubMed ID: 22568705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endoglucanase pretreatment aids in isolating tailored-cellulose nanofibrils combining energy saving and high-performance packaging.
    Las-Casas B; Arantes V
    Int J Biol Macromol; 2023 Jul; 242(Pt 4):125057. PubMed ID: 37244346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ductile all-cellulose nanocomposite films fabricated from core-shell structured cellulose nanofibrils.
    Larsson PA; Berglund LA; Wågberg L
    Biomacromolecules; 2014 Jun; 15(6):2218-23. PubMed ID: 24773125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils.
    Benítez AJ; Torres-Rendon J; Poutanen M; Walther A
    Biomacromolecules; 2013 Dec; 14(12):4497-506. PubMed ID: 24245557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of nanocellulose gels and films from invasive tree species.
    Almeida RO; Ramos A; Alves L; Potsi E; Ferreira PJT; Carvalho MGVS; Rasteiro MG; Gamelas JAF
    Int J Biol Macromol; 2021 Oct; 188():1003-1011. PubMed ID: 34371043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocellulose Film Properties Tunable by Controlling Degree of Fibrillation of TEMPO-Oxidized Cellulose.
    Wakabayashi M; Fujisawa S; Saito T; Isogai A
    Front Chem; 2020; 8():37. PubMed ID: 32117870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films.
    Morimune-Moriya S; Salajkova M; Zhou Q; Nishino T; Berglund LA
    Biomacromolecules; 2018 Jul; 19(7):2423-2431. PubMed ID: 29620880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.
    Iwamoto S; Isogai A; Iwata T
    Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paper-Based Oil Barrier Packaging using Lignin-Containing Cellulose Nanofibrils.
    H Tayeb A; Tajvidi M; Bousfield D
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32188070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils.
    Zhao J; He X; Wang Y; Zhang W; Zhang X; Zhang X; Deng Y; Lu C
    Carbohydr Polym; 2014 Apr; 104():143-50. PubMed ID: 24607171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.