These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 32167304)
1. Self-Fibrillating Cellulose Fibers: Rapid In Situ Nanofibrillation to Prepare Strong, Transparent, and Gas Barrier Nanopapers. Gorur YC; Larsson PA; Wågberg L Biomacromolecules; 2020 Apr; 21(4):1480-1488. PubMed ID: 32167304 [TBL] [Abstract][Full Text] [Related]
2. Bio-based films/nanopapers from lignocellulosic wastes for production of added-value micro-/nanomaterials. Guimarães BMR; Scatolino MV; Martins MA; Ferreira SR; Mendes LM; Lima JT; Junior MG; Tonoli GHD Environ Sci Pollut Res Int; 2022 Feb; 29(6):8665-8683. PubMed ID: 34490567 [TBL] [Abstract][Full Text] [Related]
3. Advanced Characterization of Self-Fibrillating Cellulose Fibers and Their Use in Tunable Filters. Gorur YC; Reid MS; Montanari C; Larsson PT; Larsson PA; Wågberg L ACS Appl Mater Interfaces; 2021 Jul; 13(27):32467-32478. PubMed ID: 34106700 [TBL] [Abstract][Full Text] [Related]
4. A fast method to prepare mechanically strong and water resistant lignocellulosic nanopapers. Sethi J; Visanko M; Österberg M; Sirviö JA Carbohydr Polym; 2019 Jan; 203():148-156. PubMed ID: 30318198 [TBL] [Abstract][Full Text] [Related]
5. Bio-inspired multiproperty materials: strong, self-healing, and transparent artificial wood nanostructures. Merindol R; Diabang S; Felix O; Roland T; Gauthier C; Decher G ACS Nano; 2015 Feb; 9(2):1127-36. PubMed ID: 25590696 [TBL] [Abstract][Full Text] [Related]
6. Correction to "Self-Fibrillating Cellulose Fibers: Rapid In Situ Nanofibrillation to Prepare Strong, Transparent, and Gas Barrier Nanopapers". Gorur YC; Larsson PA; Wågberg L Biomacromolecules; 2020 Aug; 21(8):3479. PubMed ID: 32672955 [No Abstract] [Full Text] [Related]
7. Eco-Friendly Cellulose Nanofibrils Designed by Nature: Effects from Preserving Native State. Yang X; Reid MS; Olsén P; Berglund LA ACS Nano; 2020 Jan; 14(1):724-735. PubMed ID: 31886646 [TBL] [Abstract][Full Text] [Related]
8. Comparative study of cellulose and lignocellulose nanopapers prepared from hard wood pulps: Morphological, structural and barrier properties. Djafari Petroudy SR; Rahmani N; Rasooly Garmaroody E; Rudi H; Ramezani O Int J Biol Macromol; 2019 Aug; 135():512-520. PubMed ID: 31152834 [TBL] [Abstract][Full Text] [Related]
9. Mechanically strong nanopapers based on lignin containing cellulose micro- and nano-hybrid fibrils: Lignin content-fibrils morphology-strengthening mechanism. Dong J; Zeng J; Li P; Li J; Wang B; Xu J; Gao W; Chen K Carbohydr Polym; 2023 Jul; 311():120753. PubMed ID: 37028856 [TBL] [Abstract][Full Text] [Related]
10. Water-resistant hybrid cellulose nanofibril films prepared by charge reversal on gibbsite nanoclays. Sethi J; Wågberg L; Larsson PA Carbohydr Polym; 2022 Nov; 295():119867. PubMed ID: 35989010 [TBL] [Abstract][Full Text] [Related]
11. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Wu CN; Saito T; Fujisawa S; Fukuzumi H; Isogai A Biomacromolecules; 2012 Jun; 13(6):1927-32. PubMed ID: 22568705 [TBL] [Abstract][Full Text] [Related]
12. Endoglucanase pretreatment aids in isolating tailored-cellulose nanofibrils combining energy saving and high-performance packaging. Las-Casas B; Arantes V Int J Biol Macromol; 2023 Jul; 242(Pt 4):125057. PubMed ID: 37244346 [TBL] [Abstract][Full Text] [Related]
13. Ductile all-cellulose nanocomposite films fabricated from core-shell structured cellulose nanofibrils. Larsson PA; Berglund LA; Wågberg L Biomacromolecules; 2014 Jun; 15(6):2218-23. PubMed ID: 24773125 [TBL] [Abstract][Full Text] [Related]
14. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Benítez AJ; Torres-Rendon J; Poutanen M; Walther A Biomacromolecules; 2013 Dec; 14(12):4497-506. PubMed ID: 24245557 [TBL] [Abstract][Full Text] [Related]
15. Production of nanocellulose gels and films from invasive tree species. Almeida RO; Ramos A; Alves L; Potsi E; Ferreira PJT; Carvalho MGVS; Rasteiro MG; Gamelas JAF Int J Biol Macromol; 2021 Oct; 188():1003-1011. PubMed ID: 34371043 [TBL] [Abstract][Full Text] [Related]
16. Nanocellulose Film Properties Tunable by Controlling Degree of Fibrillation of TEMPO-Oxidized Cellulose. Wakabayashi M; Fujisawa S; Saito T; Isogai A Front Chem; 2020; 8():37. PubMed ID: 32117870 [TBL] [Abstract][Full Text] [Related]
17. Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films. Morimune-Moriya S; Salajkova M; Zhou Q; Nishino T; Berglund LA Biomacromolecules; 2018 Jul; 19(7):2423-2431. PubMed ID: 29620880 [TBL] [Abstract][Full Text] [Related]
18. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Iwamoto S; Isogai A; Iwata T Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950 [TBL] [Abstract][Full Text] [Related]
19. Cellulose Nanofibrils/Alginates Double-Network Composites: Effects of Interfibrillar Interaction and G/M Ratio of Alginates on Mechanical Performance. Zha L; Aachmann FL; Sletta H; Arlov Ø; Zhou Q Biomacromolecules; 2024 Aug; 25(8):4797-4808. PubMed ID: 38976360 [TBL] [Abstract][Full Text] [Related]
20. Paper-Based Oil Barrier Packaging using Lignin-Containing Cellulose Nanofibrils. H Tayeb A; Tajvidi M; Bousfield D Molecules; 2020 Mar; 25(6):. PubMed ID: 32188070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]