These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32167358)

  • 1. Birth and Stabilization of Phase Clusters by Multiplexing of Adaptive Networks.
    Berner R; Sawicki J; Schöll E
    Phys Rev Lett; 2020 Feb; 124(8):088301. PubMed ID: 32167358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplitude dynamics favors synchronization in complex networks.
    Gambuzza LV; Gómez-Gardeñes J; Frasca M
    Sci Rep; 2016 Apr; 6():24915. PubMed ID: 27108847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronization performance of complex oscillator networks.
    Yan G; Chen G; Lü J; Fu ZQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056116. PubMed ID: 20365052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cluster and group synchronization in delay-coupled networks.
    Dahms T; Lehnert J; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016202. PubMed ID: 23005502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Onset of synchronization in complex gradient networks.
    Wang X; Huang L; Guan S; Lai YC; Lai CH
    Chaos; 2008 Sep; 18(3):037117. PubMed ID: 19045491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization properties of network motifs: influence of coupling delay and symmetry.
    D'Huys O; Vicente R; Erneux T; Danckaert J; Fischer I
    Chaos; 2008 Sep; 18(3):037116. PubMed ID: 19045490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete characterization of the stability of cluster synchronization in complex dynamical networks.
    Sorrentino F; Pecora LM; Hagerstrom AM; Murphy TE; Roy R
    Sci Adv; 2016 Apr; 2(4):e1501737. PubMed ID: 27152349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symmetry and symmetry breaking in a Kuramoto model induced on a Möbius strip.
    Ren Q; Long Q; Zhao J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022811. PubMed ID: 23496572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic feed-forward explosive synchronization in multilayer networks.
    Rathore V; Kachhvah AD; Jalan S
    Chaos; 2021 Dec; 31(12):123130. PubMed ID: 34972326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization-based scalability of complex clustered networks.
    Ma X; Huang L; Lai YC; Wang Y; Zheng Z
    Chaos; 2008 Dec; 18(4):043109. PubMed ID: 19123619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Onset of synchronization in weighted scale-free networks.
    Wang WX; Huang L; Lai YC; Chen G
    Chaos; 2009 Mar; 19(1):013134. PubMed ID: 19334998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cluster synchronization in oscillatory networks.
    Belykh VN; Osipov GV; Petrov VS; Suykens JA; Vandewalle J
    Chaos; 2008 Sep; 18(3):037106. PubMed ID: 19045480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-way dependent clusters and stability of cluster synchronization in directed networks.
    Lodi M; Sorrentino F; Storace M
    Nat Commun; 2021 Jul; 12(1):4073. PubMed ID: 34210969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rewiring networks for synchronization.
    Hagberg A; Schult DA
    Chaos; 2008 Sep; 18(3):037105. PubMed ID: 19045479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical calculation of the frequency shift in phase oscillators driven by colored noise: implications for electrical engineering and neuroscience.
    Galán RF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036113. PubMed ID: 19905186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction to Focus Issue: synchronization in complex networks.
    Suykens JA; Osipov GV
    Chaos; 2008 Sep; 18(3):037101. PubMed ID: 19045475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exotic states induced by coevolving connection weights and phases in complex networks.
    Thamizharasan S; Chandrasekar VK; Senthilvelan M; Berner R; Schöll E; Senthilkumar DV
    Phys Rev E; 2022 Mar; 105(3-1):034312. PubMed ID: 35428128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assortative and modular networks are shaped by adaptive synchronization processes.
    Avalos-Gaytán V; Almendral JA; Papo D; Schaeffer SE; Boccaletti S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):015101. PubMed ID: 23005481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Driven synchronization in random networks of oscillators.
    Hindes J; Myers CR
    Chaos; 2015 Jul; 25(7):073119. PubMed ID: 26232970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renormalization group approach to oscillator synchronization.
    Kogan O; Rogers JL; Cross MC; Refael G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036206. PubMed ID: 19905199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.