BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 32167466)

  • 1. Effect of helical kink in antimicrobial peptides on membrane pore formation.
    Tuerkova A; Kabelka I; Králová T; Sukeník L; Pokorná Š; Hof M; Vácha R
    Elife; 2020 Mar; 9():. PubMed ID: 32167466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Molecular Understanding of α-Helical Membrane-Active Peptides.
    Kabelka I; Vácha R
    Acc Chem Res; 2021 May; 54(9):2196-2204. PubMed ID: 33844916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terminal charges modulate the pore forming activity of cationic amphipathic helices.
    Strandberg E; Bentz D; Wadhwani P; Bürck J; Ulrich AS
    Biochim Biophys Acta Biomembr; 2020 Apr; 1862(4):183243. PubMed ID: 32126225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial peptides in toroidal and cylindrical pores.
    Mihajlovic M; Lazaridis T
    Biochim Biophys Acta; 2010 Aug; 1798(8):1485-93. PubMed ID: 20403332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial peptides (AMPs): peptide structure and mode of action.
    Park Y; Hahm KS
    J Biochem Mol Biol; 2005 Sep; 38(5):507-16. PubMed ID: 16202228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational studies of membrane pore formation induced by Pin2.
    Velasco-Bolom JL; Garduño-Juárez R
    J Biomol Struct Dyn; 2022 Jul; 40(11):5060-5068. PubMed ID: 33397200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 14-Helical β-Peptides Elicit Toxicity against C. albicans by Forming Pores in the Cell Membrane and Subsequently Disrupting Intracellular Organelles.
    Lee MR; Raman N; Ortiz-Bermúdez P; Lynn DM; Palecek SP
    Cell Chem Biol; 2019 Feb; 26(2):289-299.e4. PubMed ID: 30581136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulations of Membrane-Disrupting Peptides II: AMP Piscidin 1 Favors Surface Defects over Pores.
    Perrin BS; Fu R; Cotten ML; Pastor RW
    Biophys J; 2016 Sep; 111(6):1258-1266. PubMed ID: 27653484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity determinants of helical antimicrobial peptides: a large-scale computational study.
    He Y; Lazaridis T
    PLoS One; 2013; 8(6):e66440. PubMed ID: 23776672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial peptides bind more strongly to membrane pores.
    Mihajlovic M; Lazaridis T
    Biochim Biophys Acta; 2010 Aug; 1798(8):1494-502. PubMed ID: 20188066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pore formation and the key factors in antibacterial activity of aurein 1.2 and LLAA inside lipid bilayers, a molecular dynamics study.
    Cheraghi N; Hosseini M; Mohammadinejad S
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):347-356. PubMed ID: 29030244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amphiphilic alpha-helical antimicrobial peptides and their structure/function relationships.
    Dennison SR; Wallace J; Harris F; Phoenix DA
    Protein Pept Lett; 2005 Jan; 12(1):31-9. PubMed ID: 15638801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore formation induced by an antimicrobial peptide: electrostatic effects.
    Jean-François F; Elezgaray J; Berson P; Vacher P; Dufourc EJ
    Biophys J; 2008 Dec; 95(12):5748-56. PubMed ID: 18820233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane interactions and pore formation by the antimicrobial peptide protegrin.
    Lazaridis T; He Y; Prieto L
    Biophys J; 2013 Feb; 104(3):633-42. PubMed ID: 23442914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations.
    Aisenbrey C; Marquette A; Bechinger B
    Adv Exp Med Biol; 2019; 1117():33-64. PubMed ID: 30980352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Helical Kink on Peptide Translocation across Phospholipid Membranes.
    Brožek R; Kabelka I; Vácha R
    J Phys Chem B; 2020 Jul; 124(28):5940-5947. PubMed ID: 32603116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide-membrane interactions of three related antimicrobial peptides.
    Hollmann A; Martínez M; Noguera ME; Augusto MT; Disalvo A; Santos NC; Semorile L; Maffía PC
    Colloids Surf B Biointerfaces; 2016 May; 141():528-536. PubMed ID: 26896660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide-lipid interactions and selective toxicity.
    Tachi T; Epand RF; Epand RM; Matsuzaki K
    Biochemistry; 2002 Aug; 41(34):10723-31. PubMed ID: 12186559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.