These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 32167466)

  • 21. Antimicrobial Peptides Share a Common Interaction Driven by Membrane Line Tension Reduction.
    Henderson JM; Waring AJ; Separovic F; Lee KYC
    Biophys J; 2016 Nov; 111(10):2176-2189. PubMed ID: 27851941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and Formation Mechanism of Antimicrobial Peptides Temporin B- and L-Induced Tubular Membrane Protrusion.
    Zhang S; Ma M; Shao Z; Zhang J; Fu L; Li X; Fang W; Gao L
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural determinants of antimicrobial and antiplasmodial activity and selectivity in histidine-rich amphipathic cationic peptides.
    Mason AJ; Moussaoui W; Abdelrahman T; Boukhari A; Bertani P; Marquette A; Shooshtarizaheh P; Moulay G; Boehm N; Guerold B; Sawers RJH; Kichler A; Metz-Boutigue MH; Candolfi E; Právost G; Bechinger B
    J Biol Chem; 2009 Jan; 284(1):119-133. PubMed ID: 18984589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Charged Antimicrobial Peptides Can Translocate across Membranes without Forming Channel-like Pores.
    Ulmschneider JP
    Biophys J; 2017 Jul; 113(1):73-81. PubMed ID: 28700927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane interacting peptides: from killers to helpers.
    Dufourc EJ; Buchoux S; Toupé J; Sani MA; Jean-François F; Khemtémourian L; Grélard A; Loudet-Courrèges C; Laguerre M; Elezgaray J; Desbat B; Odaert B
    Curr Protein Pept Sci; 2012 Nov; 13(7):620-31. PubMed ID: 23116443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction of a toroidal model for the magainin pore.
    Murzyn K; Pasenkiewicz-Gierula M
    J Mol Model; 2003 Aug; 9(4):217-24. PubMed ID: 12774216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Curved or linear? Predicting the 3-dimensional structure of α-helical antimicrobial peptides in an amphipathic environment.
    van den Bergen G; Stroet M; Caron B; Poger D; Mark AE
    FEBS Lett; 2020 Mar; 594(6):1062-1080. PubMed ID: 31794050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and functional implications of a proline residue in the antimicrobial peptide gaegurin.
    Suh JY; Lee YT; Park CB; Lee KH; Kim SC; Choi BS
    Eur J Biochem; 1999 Dec; 266(2):665-74. PubMed ID: 10561611
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toroidal pores formed by antimicrobial peptides show significant disorder.
    Sengupta D; Leontiadou H; Mark AE; Marrink SJ
    Biochim Biophys Acta; 2008 Oct; 1778(10):2308-17. PubMed ID: 18602889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of Halictine-Related Antimicrobial Peptides with Membrane Models.
    Pazderková M; Maloň P; Zíma V; Hofbauerová K; Kopecký V; Kočišová E; Pazderka T; Čeřovský V; Bednárová L
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30717183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of lipids in the interaction of antimicrobial peptides with membranes.
    Teixeira V; Feio MJ; Bastos M
    Prog Lipid Res; 2012 Apr; 51(2):149-77. PubMed ID: 22245454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chiral supramolecular architecture of stable transmembrane pores formed by an α-helical antibiotic peptide in the presence of lyso-lipids.
    Strandberg E; Bentz D; Wadhwani P; Ulrich AS
    Sci Rep; 2020 Mar; 10(1):4710. PubMed ID: 32170095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spontaneous formation of structurally diverse membrane channel architectures from a single antimicrobial peptide.
    Wang Y; Chen CH; Hu D; Ulmschneider MB; Ulmschneider JP
    Nat Commun; 2016 Nov; 7():13535. PubMed ID: 27874004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane pores induced by magainin.
    Ludtke SJ; He K; Heller WT; Harroun TA; Yang L; Huang HW
    Biochemistry; 1996 Oct; 35(43):13723-8. PubMed ID: 8901513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of the central L- or D-Pro residue on structure and mode of action of a cell-selective alpha-helical IsCT-derived antimicrobial peptide.
    Lim SS; Kim Y; Park Y; Kim JI; Park IS; Hahm KS; Shin SY
    Biochem Biophys Res Commun; 2005 Sep; 334(4):1329-35. PubMed ID: 16040002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solution structure and membrane interaction mode of an antimicrobial peptide gaegurin 4.
    Chi SW; Kim JS; Kim DH; Lee SH; Park YH; Han KH
    Biochem Biophys Res Commun; 2007 Jan; 352(3):592-7. PubMed ID: 17141187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions of cationic-hydrophobic peptides with lipid bilayers: a Monte Carlo simulation method.
    Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2007 Sep; 93(6):1858-71. PubMed ID: 17496025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flexibility is a mechanical determinant of antimicrobial activity for amphipathic cationic α-helical antimicrobial peptides.
    Liu L; Fang Y; Wu J
    Biochim Biophys Acta; 2013 Nov; 1828(11):2479-86. PubMed ID: 23806649
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights into conformation and membrane interactions of the acyclic and dicarba-bridged brevinin-1BYa antimicrobial peptides.
    Timmons PB; O'Flynn D; Conlon JM; Hewage CM
    Eur Biophys J; 2019 Dec; 48(8):701-710. PubMed ID: 31515575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The amphipathic design in helical antimicrobial peptides.
    Bui Thi Phuong H; Doan Ngan H; Le Huy B; Vu Dinh H; Luong Xuan H
    ChemMedChem; 2024 Apr; 19(7):e202300480. PubMed ID: 38408263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.