BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32167603)

  • 1. Isoleucine Residues Determine Chiral Discrimination of Odorant-Binding Protein.
    Zaremska V; Tan J; Lim S; Knoll W; Pelosi P
    Chemistry; 2020 Jul; 26(40):8720-8724. PubMed ID: 32167603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural determinants of a conserved enantiomer-selective carvone binding pocket in the human odorant receptor OR1A1.
    Geithe C; Protze J; Kreuchwig F; Krause G; Krautwurst D
    Cell Mol Life Sci; 2017 Nov; 74(22):4209-4229. PubMed ID: 28656349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantioselective recognition of menthol by mouse odorant receptors.
    Takai Y; Touhara K
    Biosci Biotechnol Biochem; 2015; 79(12):1980-6. PubMed ID: 26248186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site.
    Katada S; Hirokawa T; Oka Y; Suwa M; Touhara K
    J Neurosci; 2005 Feb; 25(7):1806-15. PubMed ID: 15716417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical physics modeling and interpretation of the adsorption of enantiomeric terpenes onto the human olfactory receptor OR1A1.
    Ben Khemis I; Bouzid M; Mechi N; Ben Lamine A
    Int J Biol Macromol; 2021 Feb; 171():428-434. PubMed ID: 33412204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of ligands for olfactory receptors by functional expression of a receptor library.
    Krautwurst D; Yau KW; Reed RR
    Cell; 1998 Dec; 95(7):917-26. PubMed ID: 9875846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mouse eugenol odorant receptor: structural and functional plasticity of a broadly tuned odorant binding pocket.
    Baud O; Etter S; Spreafico M; Bordoli L; Schwede T; Vogel H; Pick H
    Biochemistry; 2011 Feb; 50(5):843-53. PubMed ID: 21142015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key Amino Residues Determining Binding Activities of the Odorant Binding Protein AlucOBP22 to Two Host Plant Terpenoids of Apolygus lucorum.
    Liu H; Duan H; Wang Q; Xiao Y; Wang Q; Xiao Q; Sun L; Zhang Y
    J Agric Food Chem; 2019 May; 67(21):5949-5956. PubMed ID: 31050427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complexes of porcine odorant binding protein with odorant molecules belonging to different chemical classes.
    Vincent F; Spinelli S; Ramoni R; Grolli S; Pelosi P; Cambillau C; Tegoni M
    J Mol Biol; 2000 Jun; 300(1):127-39. PubMed ID: 10864504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic events underlying odorant binding protein chemoreception.
    Golebiowski J; Antonczak S; Fiorucci S; Cabrol-Bass D
    Proteins; 2007 May; 67(2):448-58. PubMed ID: 17285634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular determinants of ligand selectivity in a vertebrate odorant receptor.
    Luu P; Acher F; Bertrand HO; Fan J; Ngai J
    J Neurosci; 2004 Nov; 24(45):10128-37. PubMed ID: 15537883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biologically active LIL proteins built with minimal chemical diversity.
    Heim EN; Marston JL; Federman RS; Edwards AP; Karabadzhak AG; Petti LM; Engelman DM; DiMaio D
    Proc Natl Acad Sci U S A; 2015 Aug; 112(34):E4717-25. PubMed ID: 26261320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand specificity of odorant receptors.
    Khafizov K; Anselmi C; Menini A; Carloni P
    J Mol Model; 2007 Mar; 13(3):401-9. PubMed ID: 17120078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid sequence, post-translational modifications, binding and labelling of porcine odorant-binding protein.
    Paolini S; Scaloni A; Amoresano A; Marchese S; Napolitano E; Pelosi P
    Chem Senses; 1998 Dec; 23(6):689-98. PubMed ID: 9915115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-free and -bound structures of the binding protein (LivJ) of the Escherichia coli ABC leucine/isoleucine/valine transport system: trajectory and dynamics of the interdomain rotation and ligand specificity.
    Trakhanov S; Vyas NK; Luecke H; Kristensen DM; Ma J; Quiocho FA
    Biochemistry; 2005 May; 44(17):6597-608. PubMed ID: 15850393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enthalpically-driven ligand recognition and cavity solvation of bovine odorant binding protein.
    Gómez-Velasco H; Rojo-Domínguez A; García-Hernández E
    Biophys Chem; 2020 Feb; 257():106315. PubMed ID: 31841862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium transitions between side-chain conformations in leucine and isoleucine.
    Caballero D; Smith WW; O'Hern CS; Regan L
    Proteins; 2015 Aug; 83(8):1488-99. PubMed ID: 26018846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific involvement of two amino acid residues in cis-nerolidol binding to odorant-binding protein 5 AlinOBP5 in the alfalfa plant bug, Adelphocoris lineolatus (Goeze).
    Wang SY; Gu SH; Han L; Guo YY; Zhou JJ; Zhang YJ
    Insect Mol Biol; 2013 Apr; 22(2):172-82. PubMed ID: 23294484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of the key binding site of odorant-binding protein of Holotrichia oblita Faldermann (Coleoptera: Scarabaeida).
    Zhuang X; Wang Q; Wang B; Zhong T; Cao Y; Li K; Yin J
    Insect Mol Biol; 2014 Jun; 23(3):381-90. PubMed ID: 24576058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helical fibrous nanostructures self-assembled from metal-free phthalocyanine with peripheral chiral menthol units.
    Lv W; Wu X; Bian Y; Jiang J; Zhang X
    Chemphyschem; 2009 Oct; 10(15):2725-32. PubMed ID: 19768721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.