BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32167612)

  • 1. Spectrally-selective measurements of reversible and irreversible transverse relaxation rates from single spin-echo PRESS acquisitions in muscle.
    Mulkern RV; Nosrati R; Balasubramanian M
    NMR Biomed; 2020 Jun; 33(6):e4290. PubMed ID: 32167612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring transverse relaxation rates of the major brain metabolites from single-voxel PRESS acquisitions at a single TE.
    Nosrati R; Balasubramanian M; Mulkern R
    Magn Reson Med; 2021 Jun; 85(6):2965-2977. PubMed ID: 33404069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic sampling of the left side of long-TE spin echoes: a free lunch?
    Mulkern RV; Balasubramanian M
    MAGMA; 2018 Apr; 31(2):321-340. PubMed ID: 28884314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible, irreversible and effective transverse relaxation rates in normal aging brain at 3T.
    Sedlacik J; Boelmans K; Löbel U; Holst B; Siemonsen S; Fiehler J
    Neuroimage; 2014 Jan; 84():1032-41. PubMed ID: 24004692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood oxygen level-dependent magnetic resonance imaging of the kidneys: influence of spatial resolution on the apparent R2* transverse relaxation rate of renal tissue.
    Rossi C; Sharma P; Pazahr S; Alkadhi H; Nanz D; Boss A
    Invest Radiol; 2013 Sep; 48(9):671-7. PubMed ID: 23571833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of glutathione transverse relaxation time T
    Swanberg KM; Prinsen H; Coman D; de Graaf RA; Juchem C
    J Magn Reson; 2018 May; 290():1-11. PubMed ID: 29524756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Echo-spacing optimization for the simultaneous measurement of reversible (R2') and irreversible (R2) transverse relaxation rates.
    Song R; Song HK
    Magn Reson Imaging; 2007 Jan; 25(1):63-8. PubMed ID: 17222716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single-scan imaging technique for measurement of the relative concentrations of fat and water protons and their transverse relaxation times.
    Ma J; Wehrli FW; Song HK; Hwang SN
    J Magn Reson; 1997 Mar; 125(1):92-101. PubMed ID: 9245364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of multi-echo-based correlated spectroscopic imaging and pilot findings in human brain and calf muscle.
    Verma G; Lipnick S; Ramadan S; Nagarajan R; Thomas MA
    J Magn Reson Imaging; 2011 Aug; 34(2):262-9. PubMed ID: 21780221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of coupled 1H metabolite resonances at long TE.
    Soher BJ; Pattany PM; Matson GB; Maudsley AA
    Magn Reson Med; 2005 Jun; 53(6):1283-7. PubMed ID: 15906305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple breath-hold proton spectroscopy of human liver at 3T: Relaxation times and concentrations of glycogen, choline, and lipids.
    Weis J; Kullberg J; Ahlström H
    J Magn Reson Imaging; 2018 Feb; 47(2):410-417. PubMed ID: 28419608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the strong field dependence and nonlinear response to gadolinium contrast agent of proton transverse relaxation rates in dairy cream.
    Mulkern RV; Hung YP; Ababneh Z; Maier SE; Packard AB; Uluer MC; Kacher DF; Gambarota G; Voss S
    Magn Reson Imaging; 2005 Jul; 23(6):757-64. PubMed ID: 16198831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-suppression cycling 3-T cardiac
    Ding B; Peterzan M; Mózes FE; Rider OJ; Valkovič L; Rodgers CT
    NMR Biomed; 2021 Jul; 34(7):e4513. PubMed ID: 33826181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction between apparent diffusion coefficients and transverse relaxation rates of human brain metabolites and water studied by diffusion-weighted spectroscopy at 7 T.
    Branzoli F; Ercan E; Webb A; Ronen I
    NMR Biomed; 2014 May; 27(5):495-506. PubMed ID: 24706330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo GABA T2 determination with J-refocused echo time extension at 7 T.
    Andreychenko A; Klomp DW; de Graaf RA; Luijten PR; Boer VO
    NMR Biomed; 2013 Nov; 26(11):1596-601. PubMed ID: 23893556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Value of transverse relaxometry difference methods for iron in human brain.
    Uddin MN; Lebel RM; Wilman AH
    Magn Reson Imaging; 2016 Jan; 34(1):51-9. PubMed ID: 26435459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton T2 relaxation study of water, N-acetylaspartate, and creatine in human brain using Hahn and Carr-Purcell spin echoes at 4T and 7T.
    Michaeli S; Garwood M; Zhu XH; DelaBarre L; Andersen P; Adriany G; Merkle H; Ugurbil K; Chen W
    Magn Reson Med; 2002 Apr; 47(4):629-33. PubMed ID: 11948722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localized proton NMR spectroscopy using stimulated echoes: applications to human skeletal muscle in vivo.
    Bruhn H; Frahm J; Gyngell ML; Merboldt KD; Hänicke W; Sauter R
    Magn Reson Med; 1991 Jan; 17(1):82-94. PubMed ID: 1648655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional spectroscopic imaging with combined free induction decay and long-TE acquisition (FID echo spectroscopic imaging, FIDESI) for the detection of intramyocellular lipids in calf muscle at 7 T.
    Just Kukurova I; Valkovič L; Bogner W; Gajdošík M; Krššák M; Gruber S; Trattnig S; Chmelík M
    NMR Biomed; 2014 Aug; 27(8):980-7. PubMed ID: 24912448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lung parenchyma transverse relaxation rates at 0.55 T.
    Li B; Lee NG; Cui SX; Nayak KS
    Magn Reson Med; 2023 Apr; 89(4):1522-1530. PubMed ID: 36404674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.